Материалы        02.04.2019   

Какие виды сырья используются для получения полимеров. Виды полимерных материалов

Полимерные материалы - это химические высокомолекулярные соединения, которые состоят из многочисленных маломолекулярных мономеров (звеньев) одинакового строения. Зачастую для изготовления полимеров используют следующие мономерные компоненты: этилен, винилхлорид, винилденхлорид, винилацетат, пропилен, метилметакрилат, тетрафторэтилен, стирол, мочевину, меламин, формальдегид, фенол. В данной статье мы подробно рассмотрим, что такое полимерные материалы, каковы их химические и физические свойства, классификация и виды.

Виды полимеров

Особенностью молекул данного материала является большая которая соответствует следующему значению: М>5*103. Соединения с меньшим уровнем этого параметра (М=500-5000) принято называть олигомерами. У низкомолекулярных соединений масса меньше 500. Различают следующие виды полимерных материалов: синтетические и природные. К последним принято относить натуральный каучук, слюду, шерсть, асбест, целлюлозу и т. д. Однако основное место занимают полимеры синтетического характера, которые получают в результате процесса химического синтеза из соединений низкомолекулярного уровня. В зависимости от метода изготовления высокомолекулярных материалов, различают полимеры, которые созданы или путем поликонденсации, или с помощью реакции присоединения.

Полимеризация

Этот процесс представляет собой объединение низкомолекулярных компонентов в высокомолекулярные с получением длинных цепей. Величина уровня полимеризации - это количество «меров» в молекулах данного состава. Чаще всего полимерные материалы содержат от тысячи до десяти тысяч их единиц. Путем полимеризации получают следующие часто применяемые соединения: полиэтилен, полипропилен, поливинилхлорид, политетрафторэтилен, полистирол, полибутадиен и др.

Поликонденсация

Данный процесс представляет собой ступенчатую реакцию, которая заключается в соединении или большого количества однотипных мономеров, или пары различных групп (А и Б) в поликонденсаторы (макромолекулы) с одновременным образованием следующих побочных продуктов: диоксида углерода, хлороводорода, аммиака, воды и др. При помощи поликонденсации получают силиконы, полисульфоны, поликарбонаты, аминопласты, фенопласты, полиэстеры, полиамиды и другие полимерные материалы.

Полиприсоединение

Под данным процессом понимают образование полимеров в результате реакций множественного присоединения мономерных компонентов, которые содержат предельные реакционные объединения, к мономерам непредельных групп (активные циклы или двойные связи). В отличие от поликонденсации, реакция полиприсоединения протекает без выделений побочных продуктов. Важнейшим процессом данной технологии считают отверждение и получение полиуретанов.

Классификация полимеров

По составу все полимерные материалы делятся на неорганические, органические и элементоорганические. Первые из них слюда, асбест, керамика и др.) не содержат атомарный углерод. Их основой являются оксиды алюминия, магния, кремния и т. д. Органические полимеры составляют наиболее обширный класс, они содержат атомы углерода, водорода, азота, серы, галогена и кислорода. Элементоорганические полимерные материалы - это соединения, которые в составе основных цепей имеют, кроме перечисленных, и атомы кремния, алюминия, титана и других элементов, способных сочетаться с органическими радикалами. В природе такие комбинации не возникают. Это исключительно синтетические полимеры. Характерными представителями этой группы являются соединения на кремнийорганической основе, главная цепь которых строится из атомов кислорода и кремния.

Для получения полимеров с необходимыми свойствами в технике зачастую используют не «чистые» вещества, а их сочетания с органическими или неорганическими компонентами. Хорошим примером служат полимерные строительные материалы: металлопласты, пластмассы, стеклопластики, полимербетоны.

Структура полимеров

Своеобразие свойств этих материалов обусловлено их структурой, которая, в свою очередь, делится на следующие виды: линейно-разветвленная, линейная, пространственная с большими молекулярными группами и весьма специфическими геометрическими строениями, а также лестничная. Рассмотрим вкратце каждую из них.

Полимерные материалы с линейно-разветвленной структурой, кроме основной цепи молекул, имеют боковые ответвления. К таким полимерам относятся полипропилен и полиизобутилен.

Материалы с линейной структурой имеют длинные зигзагообразные либо закрученные в спирали цепочки. Их макромолекулы прежде всего характеризуются повторениями участков в одной структурной группе звена либо химической единицы цепи. Полимеры с линейной структурой отличаются наличием весьма длинных макромолекул со значительным различием характера связей вдоль цепи и между ними. Имеются ввиду межмолекулярные и химические связи. Макромолекулы таких материалов весьма гибкие. И это свойство является основой полимерных цепей, которая приводит к качественно новым характеристикам: высокой эластичности, а также отсутствию хрупкости в затвердевшем состоянии.

А теперь узнаем, что такое полимерные материалы с пространственной структурой. Эти вещества образуют при объединении между собой макромолекул прочные химические связи в поперечном направлении. В результате получается сетчатая структура, у которой неоднородная либо пространственная основа сетки. Полимеры этого типа обладают большей теплостойкостью и жесткостью, чем линейные. Эти материалы являются основой многих конструкционных неметаллических веществ.

Молекулы полимерных материалов с лестничной структурой состоят из пары цепей, которые соединены химической связью. К ним относятся кремнийорганические полимеры, которые характеризуются повышенной жесткостью, термостойкостью, кроме того, они не взаимодействуют с органическими растворителями.

Фазовый состав полимеров

Данные материалы представляют собой системы, которые состоят из аморфных и кристаллических областей. Первая из них способствует снижению жесткости, делает полимер эластичным, то есть способным к большим деформациям обратимого характера. Кристаллическая фаза способствует увеличению их прочности, твердости, модуля упругости, а также других параметров, одновременно снижая молекулярную гибкость вещества. Отношение объема всех таких областей к общему объему называется степенью кристаллизации, где максимальный уровень (до 80%) имеют полипропилены, фторопласты, полиэтилены высокой плотности. Меньшим уровнем степени кристаллизации обладают поливинилхлориды, полиэтилены низкой плотности.

В зависимости от того, как ведут себя полимерные материалы при нагреве, их принято делить на термореактивные и термопластичные.

Термореактивные полимеры

Данные материалы первично имеют линейную структуру. При нагреве они размягчаются, однако в результате протекания в них химических реакций строение меняется на пространственное, и вещество превращается в твердое. В дальнейшем это качество сохраняется. На этом принципе построены полимерные Последующий их нагрев не размягчает вещество, а приводит только к его разложению. Готовая термореактивная смесь не растворяется и не плавится, поэтому недопустима ее повторная переработка. К этому виду материалов относятся эпоксидные кремнийорганические, феноло-формальдегидные и другие смолы.

Термопластичные полимеры

Данные материалы при нагреве сначала размягчаются и потом плавятся, а при последующем охлаждении затвердевают. Термопластичные полимеры при такой обработке не претерпевают химических изменений. Это делает данный процесс полностью обратимым. Вещества этого типа имеют линейно-разветвленную или линейную структуру макромолекул, между которыми действуют малые силы и совершенно нет химических связей. К ним относятся полиэтилены, полиамиды, полистиролы и др. Технология полимерных материалов термопластичного типа предусматривает их изготовление методом литья под давлением в водоохлажденных формах, прессования, экструзии, выдувания и другими способами.

Химические свойства

Полимеры могут перебывать в следующих состояниях: твердое, жидкое, аморфное, кристаллическое фазовое, а также высокоэластическое, вязкотекучее и стеклообразное деформационное. Широкое применение полимерных материалов обусловлено их высокой стойкостью к различным агрессивным средам, таким как концентрированные кислоты и щелочи. Они не подвержены воздействию Кроме того, с увеличением их молекулярной массы происходит снижение растворимости материала в органических растворителях. А полимеры, обладающие пространственной структурой, вообще не подвержены воздействию упомянутых жидкостей.

Физические свойства

Большинство полимеров являются диэлектриками, кроме того, они относятся к немагнитным материалам. Из всех используемых конструкционных веществ только они обладают наименьшей теплопроводностью и наибольшей теплоемкостью, а также тепловой усадкой (примерно в двадцать раз больше, чем у металла). Причиной потерь герметичности различными уплотнительными узлами при условиях низкой температуры является так называемое стеклование резины, а также резкое различие между коэффициентами расширения металлов и резин в застеклованном состоянии.

Механические свойства

Полимерные материалы отличаются широким диапазоном механических характеристик, которые сильно зависят от их структуры. Кроме этого параметра, большое влияние на механические свойства вещества могут оказать различные внешние факторы. К ним относятся: температура, частота, длительность или скорость нагружения, вид напряженного состояния, давление, характер окружающей среды, термообработка и др. Особенностью механических свойств полимерных материалов является их относительно высокая прочность при весьма малой жесткости (по сравнению с металлами).

Полимеры принято делить на твердые, модуль упругости которых соответствует Е=1-10 ГПа (волокна, пленки, пластмассы), и мягкие высокоэластичные вещества, модуль упругости которых составляет Е=1-10 МПа (резины). Закономерности и механизм разрушения тех и других различны.

Для полимерных материалов характерны ярко выраженная анизотропия свойств, а также снижение прочности, развитие ползучести при условии длительного нагружения. Вмести с этим они обладают довольно высоким сопротивлением усталости. По сравнению с металлами, они отличаются более резкой зависимостью механических свойств от температуры. Одной из главных характеристик полимерных материалов является деформируемость (податливость). По этому параметру в широком температурном интервале принято оценивать их основные эксплуатационные и технологические свойства.

Полимерные материалы для пола

Теперь рассмотрим один из вариантов практического применения полимеров, раскрывающего всю возможную гамму этих материалов. Эти вещества нашли широкое применение в строительстве и ремонтно-отделочных работах, в частности в покрытии полов. Огромная популярность объясняется характеристиками рассматриваемых веществ: они устойчивы к стиранию, малотеплопроводны, имеют незначительное водопоглощение, достаточно прочны и тверды, обладают высокими лакокрасочными качествами. Производство полимерных материалов можно разделить условно на три группы: линолеумы (рулонные), плиточные изделия и смеси для устройства бесшовных полов. Теперь вкратце рассмотрим каждый из них.

Линолеумы изготавливают на основе разных типов наполнителей и полимеров. В их состав также могут входить пластификаторы, технологические добавки и пигменты. В зависимости от типа полимерного материала, различают полиэфирные (глифталевые), поливинилхлоридные, резиновые, коллоксилиновые и другие покрытия. Кроме того, по структуре они делятся на безосновные и со звуко-, теплоизолирующей основой, однослойные и многослойные, с гладкой, ворсистой и рифленой поверхностью, а также одно- и многоцветные.

Материалы для бесшовных полов являются наиболее удобными и гигиеничными в эксплуатации, они обладают высокой прочностью. Эти смеси принято делить на полимерцемент, полимербетон и поливинилацетат.


Термин «полимерные материалы» является обобщающим. Он объединяет три обширных группы синтетических пластиков, а именно: полимеры; пластмассы и их морфологическую разновидность - полимерные композиционные материалы (ПКМ) или, как их еще называют, армированные пластики. Общее для перечисленных групп то, что их обязательной частью является полимерная составляющая, которая и определяет основные термодеформационные и технологические свойства материала. Полимерная составляющая представляет собой органическое высокомолекулярное вещество, полученное в результате химической реакции между молекулами исходных низкомолекулярных веществ - мономеров.

Полимерами принято называть высокомолекулярные вещества (гомополимеры) с введенными в них добавками, а именно стабилизаторами, ингибиторами, пластификаторами, смазками, антирадами и т. д. Физически полимеры являются гомофазными материалами, они сохраняют все присущие гомополимерам физико-химические особенности.

Пластмассами называются композиционные материалы на основе полимеров, содержащие дисперсные или коротковолокнистые наполнители, пигменты и иные сыпучие компоненты. Наполнители не образуют непрерывной фазы. Они (дисперсная среда) располагаются в полимерной матрице (дисперсионная среда). Физически пластмассы представляют собой гетерофазные материалы с изотропными (одинаковыми во всех направлениях) физическими макросвойствами.
Пластмассы могут быть разделены на две основные группы - термопластические и термореактивные. Термопластические - это те, которые после формирования могут быть расплавлены и снова сформованы; термореактивные, сформованные раз, уже не плавятся и не могут принять другую форму под воздействием температуры и давления. Почти все пластмассы, используемые в упаковках, относятся к термопластическим, например, полиэтилен и полипропилен, полистирол, поливинилхлорид, полиэтилентерефталат, найлон (капрон), поликарбонат, поливинилацетат, поливиниловый спирт и другие.
Пластмассы также можно располагать по категориям в зависимости от метода, который используется для их полимеризации, на полимеры, полученные по механизму полиприсоединения или поликонденсации. Полимеры, полученные полиприсоединением, производятся с помощью механизма, который включает либо свободные радикалы, либо ионы, по которому малые молекулы быстро присоединяются к растущей цепи, без образования сопутствующих молекул. Поликонденсационные полимеры производятся с помощью реакции функциональных групп в молекулах друг с другом, так что постадийно образуется длинная цепь полимера, и обычно происходит образование низкомолекулярного сопутствующего продукта, например воды, во время каждой стадии реакции. Большинство упаковочных полимеров, включая полиолефины, поливинилхлорид и полистирол - это полимеры, полученные по механизму полиприсоединения (полимеризации).

Реакция полимеризации - это последовательное присоединение молекул ненасыщенных соединений друг к другу с образованием высокомолекулярного продукта - полимера. Молекулы алкена, вступающие в реакцию полимеризации, называются мономерами. Число элементарных звеньев, повторяющихся в макромолекуле, называется степенью полимеризации (обозначается n). В зависимости от степени полимеризации из одних и тех же мономеров можно получать вещества с различными свойствами. Так, полиэтилен с короткими цепями (n = 20) является жидкостью, обладающей смазочными свойствами. Полиэтилен с длиной цепи в 1500-2000 звеньев представляет собой твердый, но гибкий пластический материал, из которого можно получать пленки, изготовлять бутылки и другую посуду, эластичные трубы и т. д. Наконец, полиэтилен с длиной цели в 5-6 тыс. звеньев является твердым веществом, из которого можно готовить литые изделия, жесткие трубы, прочные нити.

Если в реакции полимеризации принимает участие небольшое число молекул, то образуются низкомолекулярные вещества, например димеры, тримеры и т. д. Условия протекания реакций полимеризации весьма различные. В некоторых случаях необходимы катализаторы и высокое давление. Но главным фактором является строение молекулы мономера. В реакцию полимеризации вступают непредельные (ненасыщенные) соединения за счет разрыва кратных связей.

Полимеризация - это цепная реакция, и, для того чтобы она началась, необходимо активировать молекулы мономера с помощью так называемых инициаторов. Такими инициаторами реакции могут быть свободные радикалы или ионы (катионы, анионы). В зависимости от природы инициатора различают радикальный, катионный или анионный механизмы полимеризации.

Химические и физические свойства пластиков обусловлены их химическим составом, средней молекулярной массой и распределением молекулярной массы, историей обработки (и использования), и наличием добавок.

Полимерные композиционные материалы являются разновидностью пластмасс. Они отличаются тем, что в них используются не дисперсные, а армирующие, то есть усиливающие наполнители (волокна, ткани, ленты, войлок, монокристаллы), образующие в ПКМ самостоятельную непрерывную фазу. Отдельные разновидности таких ПКМ называют слоистыми пластиками. Такая морфология позволяет получить пластики с весьма высокими деформационно-прочностными, усталостными, электрофизическими, акустическими и иными целевыми характеристиками, соответствующими самым высоким современным требованиям.

Структурные формулы полимеров кратко записывают так: формулу элементарного звена заключают в скобки и справа внизу ставят букву n. Например, структурная формула полиэтилена (-СН 2 -СН 2 -) n . Легко заключить, что название полимера слагается из названия мономера и приставки поли-, например полиэтилен, поливинилхлорид, полистирол и т. д.

Наиболее распространенными полимерами углеводородного строения являются полиэтилен и полипропилен.

Полиэтилен получают полимеризацией этилена. Полипропилен получают стереоспецифической полимеризацией пропилена (пропена).
Стереоспецифическая полимеризация - это процесс получения полимера со строго упорядоченным пространственным строением.

К полимеризации способны многие другие соединения - производные этилена, имеющие общую формулу СН 2 =СН-X, где Х - различные атомы или группы атомов.

Виды полимеров

Полиолефины - это класс полимеров одинаковой химической природы (химическая формула -(СН 2)- n) с разнообразным пространственным строением молекулярных цепей, включающий в себя полиэтилен и полипропилен. Кстати сказать, все углеводы, к примеру, природный газ, сахар, парафин и дерево имеют схожее химическое строение. Всего в мире ежегодно производиться 150 млн. т. полимеров, а полеолефины составляют примерно 60% от этого количества. В будущим полиолефины будут окружать нас в гораздо большей степени, чем сегодня, поэтому полезно присмотреться к ним повнимательнее.
Комплекс свойств полиолефинов, в том числе такие, как стойкость к ультрафиолету, окислителям, к разрыву, протыканию, усадке при нагреве и к раздиру, меняется в очень широких пределах в зависимости от степени ориентационной вытяжки молекул в процессе получения полимерных материалов и изделий.
Особенно следует подчеркнуть, что полеолефины экологически чище большинства применяемых человеком материалов. При производстве, транспортировке и обработке стекла, дерева и бумаги, бетона и металла используется много энергии, при выработке которой неизбежно загрязняется окружающая среда. При утилизации традиционных материалов также выделяются вредные вещества и затрачивается энергия. Полиолефины производятся и утилизуются без выделения вредных веществ и при минимальных затаратах энергии, причем при сжигании полиолефинов выделяется большое количество чистого тепла с побочными продуктами в виде водяного пара и углекислого газа.

Полиэтилен
Около 60% всех пластиков, используемых для упаковки - это полиэтилен, который используется так широко главным образом благодаря его низкой стоимости, но также благодаря его отличным свойствам для многих областей применения.

Полиэтилен высокой плотности (ПЭНД - низкого давления) имеет самую простую структуру из всех пластиков, он состоит из повторяющихся звеньев этилена:
-(CH 2 -CH 2)- n полиэтилен высокой плотности.

Полиэтилен низкой плотности (ПЭВД - высокого давления) имеет ту же химическую формулу, но отличается тем, что его структура разветвленная:
-(CH 2 -CHR)- n полиэтилен низкой плотности,
где R может быть -H, -(CH 2) n , -CH 3 , или более сложной структурой с вторичным разветвлением.

Полиэтилен, благодаря своему простому химическому строению, легко складывается в кристаллическую решетку, и, следовательно, имеет тенденцию к высокой степени кристалличности. Разветвление цепи препятствует этой способности к кристаллизации, что приводит к меньшему числу молекул на единицу объема, и, следовательно, меньшей плотности.

ПЭВД - полиэтилен высокого давления. Пластичен, слегка матовый, воскообразный на ощупь, перерабатывается методом экструзии в рукавную пленку с раздувом или в плоскую пленку через плоскощелевую головку и охлаждаемый валик. Пленка из ПЭВД прочна при растяжении и сжатии, стойка к удару и раздиру, прочна при низких температурах. Имеет особенность - довольно низкая температура размягчения (около 100 градусов Цельсия).

ПЭНД - полиэтилен низкого давления. Пленка из ПЭНД - жесткая, прочная, менее воскообразная на ощупь по сравнению с пленками ПЭВД. Получается экструзией рукава с раздувом или экструзией плоского рукава. Температура размягчения 121°С позволяет производить стерилизацию паром. Морозостойкость этих пленок такая же, как и у пленок из ПЭВД. Устойчивость к растяжению и сжатию - высокая, а сопротивление к удару и раздиру меньше, чем у пленок из ПЭВД. Пленки из ПЭНД - это прекрасная преграда влаге. Стойки к жирам, маслам.
"Шуршащий" пакет-майка, в который вы упаковываете покупки, изготовлен именно из ПЭНД.
Существует два основных типа ПЭНД. Более «старый» тип, произведенный первым в 1930-х годах, полимеризуется при высоких температурах и давлениях, условиях, которые достаточно энергетичны, чтобы обеспечить заметную скорость реакций по цепному механизму, которые приводят к образованию разветвления как с длинными, так и с короткими цепями. Этот тип ПЭНД иногда называется полиэтиленом высокого давления (ПВД, ВД-ПЭНД, из-за высокого давления), если есть необходимость отличать его от линейного полиэтилена низкого давления, более «молодого» типа ПЭВД.

При комнатной температуры полиэтилен - довольно мягкий и гибкий материал. Он хорошо сохраняет эту гибкость в условиях холода, так что применим в упаковке замороженных пищевых продуктов. Однако при повышенных температурах, таких как 100°С, он становится слишком мягким для ряда применений. ПЭНД отличается более высокой хрупкостью и температурой размягчения, чем ПЭВД, но все же не является подходящим контейнеров горячего заполнения.

Около 30% всех пластиков, используемых для упаковки - это ПЭНД. Это наиболее широко используемый пластик для бутылок, из-за его низкой стоимости, простоты формования, и отличных эксплуатационных качеств, для многих областей применения. В своей естественной форме ПЭНД имеет молочно-белый, полупрозрачный вид, и таким образом, не подходит для областей применения, где требуется исключительная прозрачность.

Один недостаток использования ПЭНД в некоторых из областей применения - его тенденция к растрескиванию под напряжением при взаимодействии внешней среды, определяемая как разрушение пластикового контейнера при условиях одновременного напряжения и соприкосновения с продуктом, что в отдельности не приводит к разрушению. Растрескивание под напряжением при взаимодействии внешней среды в полиэтилене соотносится с кристалличностью полимера.

ПЭВД является наиболее широко применяемым упаковочным полимером, соответствующий примерно одной трети всех упаковочных пластиков. Из-за его низкой кристалличности, это более мягкий, более гибкий материал, чем ПЭНД. Благодаря низкой стоимости, он является предпочтительным материалом для пакетов и сумок. ПЭВД отличается лучшей прозрачностью, чем ПЭНД, но все же не обладает кристальной чистотой, которая желательна для некоторых областей применения упаковок.

Полипропилен
Отличается прекрасной прозрачностью (при быстром охлаждении в процессе формообразования), высокой температурой плавления, химической и водостойкостью. ПП пропускает водяные пары, что делает его незаменимым для "дышащей" упаковки продуктов питания (хлеба, зелени, бакалеи), а также в строительстве для гидро-ветроизоляции. ПП чувствителен к кислороду и окислителям. Перерабатывается методом экструзии с раздувом или через плоскощелевую головку с поливом на барабан или охлаждением в водяной бане. Имеет хорошую прозрачность и блеск, высокую химическую стойкость, особенно к маслам и жирам, не растрескивается под воздействием окружающей среды.

Поливинилхлорид
В чистом виде применяется редко из-за хрупкости и неэластичности. Недорог. Может перерабатываться в пленку методом экструзии с раздувом, либо плоскощелевой экструзии. Расплав высоковязкий. ПВХ термически нестабилен и коррозионно активен. При перегреве и горении выделяет высокотоксичное соединение хлора - диоксин. Широко распространился в 60-70е годы. Вытесняется более экологичным полипропиленом.

Полимеры - это соединения макромолекулярного типа. Их основа - мономеры, из которых формируется макроцепь полимерных веществ. Применение полимеров позволяет создавать материалы, обладающие высоким уровнем прочности, износостойкости и рядом других полезных характеристик.

Классификация полимеров

Природные . Образуются естественным природным путем. Пример: янтарь, шелк, натуральный каучук.

Синтетические . Производятся в лабораторных условиях и не содержат природных компонентов. Пример: поливинилхлорид, полипропилен, полиуретан.

Искусственные . Производятся в лабораторных условиях, но в их основе лежат природные составляющие. Пример: целлулоид, нитроцеллюлоза.

Виды полимеров и их применение очень многообразны. Большая часть предметов, которые окружают человека, созданы с использованием этих материалов. В зависимости от типа, они имеют различные свойства, которые и определяют сферу их применения.

Существует ряд распространенных полимеров, с которыми мы сталкиваемся ежедневно и этого даже не замечаем:

  • Полиэтилен. Используется для производства упаковки, труб, изоляций и других изделий, где требуется обеспечить влагонепроницаемость, устойчивость к агрессивным средам и диэлектрические характеристики.
  • Фенолформальдегид. Является основой пластмасс, лаков и клеевых составов.
  • Синтетический каучук. Обладает лучшими прочностными характеристиками и устойчивостью к истиранию, чем натуральный. Из него изготавливается резина и различные материалы на ее основе.
  • Полиметилметакрилат - всем известный плексиглас. Используется в электротехнике, а также в качестве конструкционного материала в других производственных областях.
  • Полиамил. Из него изготавливается ткань и нитки. Это капрон, нейлон и другие синтетические материалы.
  • Политетрафторэтилен, он же - тефлон. Применяется в медицине, пищевой промышленности и различных других областях. Всем известны сковородки с тефлоновым покрытием, которые были когда-то очень популярны.
  • Поливинилхлорид, он же ПВХ. Часто встречается в виде пленки, используется для изготовления изоляции кабелей, кожзаменителей, оконных профилей, натяжных потолков. Имеет очень широкую сферу использования.
  • Полистирол. Применяется для производства бытовых изделий и широкого ряда строительных материалов.
  • Полипропилен. Из этого полимера изготавливаются трубы, тара, нетканые материалы, бытовые изделия, строительные клеи и мастики.

Где применяются полимеры

Область применения полимерных материалов очень широка. Сейчас можно с уверенностью сказать - они используются в промышленности и производстве практически в любой сфере. Благодаря своим качествам полимеры полностью заменили природные материалы, существенно уступающие им по характеристикам. Поэтому стоит рассмотреть свойства полимеров и области их применения.

По классификации материалы можно разделить на:

  • композиты;
  • пластмассы;
  • пленки;
  • волокна;
  • лаки;
  • резины;
  • клеящие субстанции.
Качества каждой разновидности определяет область применения полимеров.

Быт

Оглядевшись вокруг, мы можем увидеть огромное количество изделий из синтетических материалов. Это детали бытовых приборов, ткани, игрушки, кухонные принадлежности и даже бытовая химия. По сути - это огромный ряд изделий от обычной пластмассовой расчески до стирального порошка.

Такое широкое использование обусловлено низкой стоимостью производства и высокими качественными характеристиками. Изделия прочны, гигиеничны, не содержат вредных для организма человека компонентов и универсальны. Даже обычные капроновые колготки изготовлены из полимерных составляющих. Поэтому полимеры в быту применяются гораздо чаще, чем натуральные материалы. Они существенно превосходят их по качествам и обеспечивают низкую цену изделия.

Примеры:

  • пластиковая посуда и упаковка;
  • части различных бытовых приборов;
  • синтетические ткани;
  • игрушки;
  • кухонные принадлежности;
  • изделия для санузлов.

Любая вещь из пластика или с включением синтетических волокон изготавливается на основе полимеров, так что перечень примеров может быть бесконечным.

Строительная отрасль

Применение полимеров в строительстве тоже очень обширно. Их стали использовать сравнительно недавно, примерно 50-60 лет тому назад. Сейчас большая часть строительных материалов производится с применением полимеров.

Основные направления:

  • изготовление ограждающих и строительных конструкций различного типа;
  • клеящие составы и пены;
  • производство инженерных коммуникаций;
  • материалы для тепло- и гидроизоляции;
  • наливные полы;
  • различные отделочные материалы.

В сфере ограждающих и строительных конструкций - это полимербетон, композитная арматура и балки, рамы для стеклопакетов, поликарбонат, стеклопластик и различные другие материалы подобного типа. Все изделия на полимерной основе имеют высокие прочностные характеристики, длительный срок службы и устойчивость к негативным природным явлениям.

Клеи отличаются устойчивостью к влаге и отличной адгезией. Они используются для склеивания различных материалов и имеют высокую прочность соединения. Пены - идеальное решение для герметизации стыков. Они обеспечивают высокие теплосберегающие характеристики и насчитывают огромное количество разновидностей с различными качествами.

Применение полимерных материалов в сфере производства инженерных коммуникаций - одно из наиболее обширных направлений. Они используются в водоснабжении, электрообеспечении, теплосбережении, оборудовании канализационных сетей, вентиляции и отопительных систем.

Материалы для теплоизоляции имеют отличные теплосберегающие характеристики, малый вес и доступную стоимость. Гидроизоляция отличается высоким уровнем водонепроницаемости и может выпускаться в различном виде (рулонные изделия, порошок или жидкие смеси).

Полимерные полы - это специализированный материал, который позволяет создать на черновой основе идеально ровную поверхность без трудоемких работ. Такая технология используется как в бытовом, так и в промышленном строительстве.

Современная промышленность выпускает широкий ряд отделочных материалов на основе полимеров. Они могут иметь различную структуру и форму выпуска, но по характеристикам всегда превосходят натуральную отделку и имеют гораздо меньшую стоимость.

Медицина

Применение полимеров в медицине имеет широкое распространение. Самый простой пример - одноразовые шприцы. На данный момент производится около 3 тысяч изделий, используемых в медицинской сфере.

Чаще всего в данной области используются силиконы. Они незаменимы при проведении пластических операций, создания защиты на ожоговых поверхностях, а также изготовления различных изделий. В медицине полимеры использовались с 1788 года, но в ограниченном количестве. А 1895 году они получают более широкое распространение после операции, в ходе которой костный дефект был закрыт полимером на основе целлулоида.

Все материалы данного типа можно разделить на три группы согласно применению:

  • 1 группа - для введения в организм. Это искусственные органы, протезы, кровезаменители, клеи, лекарственные препараты.
  • 2 группа - полимеры, имеющие контакт с тканями, а также веществами, предназначенными для введения в организм. Это тара для хранения крови и плазмы, стоматологические материалы, шприцы и хирургические инструменты, составляющие медицинского оборудования.
  • 3 группа - материалы, не имеющие контакта с тканями и не вводящиеся в организм. Это оборудование и приборы, лабораторная посуда, инвентарь, больничные принадлежности, постельное белье, оправы для очков и линзы.

Сельское хозяйство

Наиболее активно полимеры используются в тепличном хозяйстве и мелиорации. В первом случае имеется потребность в различных пленках, агроволокне, сотовом поликарбонате, а также арматуре. Это все необходимо для сооружения теплиц.

В мелиорации используются трубы из полимерных материалов. Они имеют меньший вес, чем металлические, доступную стоимость и более длительный срок службы.

Пищевая промышленность

В пищевой промышленности полимерные материалы используются для изготовления тары и упаковки. Могут иметь форму твердых пластиков или пленок. Основное требование - полное соответствие санитарно-эпидемиологическим нормам. Не обойтись без полимеров и в пищевом машиностроении. Их применение позволяет создавать поверхности с минимальной адгезией, что важно при транспортировке зерна и других сыпучих продуктов. Также антиадгезионные покрытия необходимы в линиях выпечки хлеба и производства полуфабрикатов.

Полимеры применяются в различных отраслях деятельности человека, что обусловливает их высокую востребованность. Обойтись без них невозможно. Натуральные материалы не могут обеспечить ряда характеристик, необходимых для соответствия конкретным условиям использования.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Введение

1. Состав полимеров

2. Классификация полимеров

3. Строение полимеров

4. Свойства полимеров

5. Применение полимеров

Введение

Полимеры - это высокомолекулярные вещества, без которых сегодня трудно представить науку и технику, удобство и комфорт, молекулы которых состоят из повторяющихся структурных элементов - звеньев, соединенных в цепочки химическими связями, в количестве, достаточном для возникновения специфических свойств. К специфическим свойствам следует отнести следующие способности: способность к значительным механическим обратимым высокоэластическим деформациям; к образованию анизотропных структур; к образованию высоковязких растворов при взаимодействии с растворителем; к резкому изменению свойств при добавлении ничтожных добавок низкомолекулярных веществ. Такие материалы служат достойной заменой металлов.

1. Состав полимеров

Полимеры - это вещества, макромолекулы которых состоят из многочисленных повторяющихся элементарных звеньев, которые представляют одинаковую группу атомов. Молекулярная масса молекул составляет от 500 до 1000000. В молекулах полимеров различают главную цепь, которая построена из большого числа атомов. Боковые цепи имеют меньшую протяженность.

Полимеры, главная цепь которых содержит одинаковые атомы, называют гомоцепными, а если атомы углерода - карбоцепными. Полимеры, в главной цепи которых содержатся различные атомы, называют гетероцепными.

Макромолекулы полимеров по форме делят на линейные, разветвленные, плоские, ленточные, пространственные, как показано на Рисунке 1.

Молекулы полимеров получают из исходных низкомолекулярных продуктов - мономеров - полимеризацией и поликонденсацией. К полимерам поликонденсационного типа относятся фенолформальдегидные смолы, полиэфиры, полиуретаны, эпоксидные смолы. К высокомолекулярным соединениям полимеризационного типа относятся поливинилхлорид, полиэтилен, полистирол, полипропилен. Высокополимерные и высокомолекулярные соединения являются основой органической природы - животных и растительных клеток, состоящих из белка.

Рисунок 1 - Структуры молекул полимеров:

а) линейная, б) разветвленная, в) ленточная, г) плоская, д) пространственная

2. Классификация полимеров

По происхождению полимеры делятся на природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные, и синтетические, например полиэтилен, полипропилен, феноло-формальдегидные смолы. Атомы или атомные группы могут располагаться в макромолекуле в виде: открытой цепи или вытянутой в линию последовательности циклов (линейные полимеры, например каучук натуральный); цепи с разветвлением (разветвленные полимеры, например амилопектин), трехмерной сетки (сшитые полимеры, например отверждённые эпоксидные смолы). Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами.

Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых или из различных стереоизомеров, чередующихся в цепи в определенной периодичности, полимеры называются стереорегулярными.

Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами. Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами. К внутренним звеньям макромолекулы одного химического строения могут быть присоединены цепи другого строения. Такие сополимеры называются привитыми.

Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами.

В зависимости от состава основной (главной) цепи полимеры, делят на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов. Из гомоцепных полимеров наиболее распространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например полиэтилен, полиметилметакрилат, политетрафторзтилен. Примеры гетероцепных полимеров - полиэфиры (полиэтилентерефталат, поликарбонаты), полиамиды, мочевино-формальдегидные смолы, белки, некоторые кремнийорганические полимеры. Полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими. Отдельную группу полимеров образуют неорганические полимеры, например пластическая сера, полифосфонитрилхлорид.

3. Строение полимеров

Эластомеры

Эластомеры - это синтетические материалы с эластическими свойствами. Они без труда изменяют свою форму; если напряжение снимается, то они снова принимают свою первоначальную форму. Эластомеры отличаются от других эластичных синтетических материалов тем, что их эластичность в большей степени зависит от температуры.

Эластомеры состоят из пространственно-сетчатых макромолекул. Молекулярная сетка у эластомеров имеет широкие ячейки. При изменении формы, ячейки раздвигаются, не разрушая места связи. После снятия напряжения ячейки, подобно резине, притягиваются в свое первоначальное положение, синтетический материал снова принимает свою первоначальную форму.

Резина - продукт вулканизации каучука. Техническая резина - композиционный материал, который может содержать до 15-20 ингредиентов, выполняющих разнообразные функции. Основное отличие резины от других полимерных материалов - способность к большим обратимым высокоэластическим деформациям в широком интервале температур, включающем комнатную и более низкие температуры. Необратимая, или пластическая, составляющая деформации резины намного меньше, чем у каучука, поскольку макромолекулы каучука соединены в резине поперечными химическими связями (вулканизационная сетка). Резина (продукт вулканизации каучука) превосходит каучук по прочностным свойствам, тепло- и морозостойкости, устойчивости к действию агрессивных сред и др.

Пластмассы

Пластмассы - это органические материалы на основе полимеров, которые способны при нагреве размягчаться и под давлением принимать определенную устойчивую форму. Простые пластмассы состоят из одних химических полимеров. Сложные пластмассы включают добавки: наполнители, пластификаторы, красители, отвердители, катализаторы. Пластмассы выпускаются монолитными - в виде термопластичных и термореактивных, газонаполненными - ячеистой структуры.

К термопластичным пластмассам относят полиэтилен низкого давления, полипропилен, ударопрочный полистирол, поливинилхлорид, стеклопластики, полиамиды и др.

К термореактивным пластмассам относятся: жесткие пенополиуретаны, аминопласты и др.

К газонаполненным пластмассам относятся пенополиуретаны - газонаполненный сверхлегкий конструкционный материал.

полимер химический свойство

4. Свойства полимеров

Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств. Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и пленки, способность к большим, длительно развивающимся обратимым деформациям; способность в высокоэластичном состоянии набухать перед растворением; высокая вязкость растворов. Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трехмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластичным деформациям.

Свойства пластмасс

Пластмассы характеризуются малой плотностью, чрезвычайно низкими электрической и тепловой проводимостями, не очень большой механической прочностью. При нагревании они разлагаются. Не чувствительны к влажности, устойчивы к действию сильных кислот и оснований. Физиологически почти безвредны.

Свойства пластмасс можно модифицировать методами сополимеризации или стереоспецифической полимеризации, путём сочетания различных пластмасс друг с другом или с другими материалами, такими как стеклянное волокно, текстильная ткань, введением наполнителей и красителей, пластификаторов, а также варьированием сырья, например использование соответствующих.

Для придания особых свойств пластмассе, в неё добавляют пластификаторы (силикон и т. п.), антипирены, антиоксиданты (непредельные углеводороды).

Свойства резин

Важное свойство резины - эластичность, способность к большим обратимым деформациям в широком интервале температур. На молекулярном уровне это объясняется тем, что при деформации цепочки молекул вытягиваются и скользят друг относительно друга, после снятия нагрузки молекулярные цепи под действием теплового движения принимают прежнее свое положение, соответствующее изначальному, но все же они незначительно смещаются. Это изменение положений молекулярных цепей характеризует остаточную деформацию. Резина обладает высокой упругостью, имеет высокую деформируемость. Резина обладает небольшой твердостью, которая определяется содержанием в ней наполнителей и пластификаторов, а также степенью вулканизации. Резины хорошо сопротивляются износу, отлично изолируют тепло и звук. Они хорошие диамагнетики и диэлектрики. Существуют резины с масло-, бензо-, водо-, паро-, термостойкостью, а также стойкостью к агрессивным средам и к утомлению (снижение механических свойств).

5. Применение полимеров

Полимеры применяются во всех сферах жизнедеятельности человека:

Активное применение полимеров в сельском хозяйстве позволяет не терять урожай из-за погода, а увеличивать его примерно на 30%. Например теплицы.

В спорте, где традиционно принято играть на траве (футбол, теннис, крокет) без полимеров не обойтись, из них производят искусственную траву.

Однако - главный потребитель чуть ли не всех материалов, производимых в нашей стране, в том числе и полимеров это промышленность. Использование полимерных материалов в машиностроении растет такими темпами, какие не знают прецедента во всей человеческой истории. К примеру, в 1976 1. машиностроение нашей страны потребило 800000 т пласт масс, а в 1960 г. - всего 116 000 т. При этом интересно отметить, что еще десять лет назад в машиностроение направлялось 37--38% всех выпускающихся в нашей стране пластмасс, а 1980 г. доля машиностроения в использовании пластмасс снизилась до 28%. И дело тут не в том, что могла бы снизится потребность, а в том, что другие отрасли народного хозяйства стали применять полимерные материалы в сельском хозяйстве, в строительстве, в легкой и пищевой промышленности еще более интенсивно.

Список использованной литературы

1. Материаловедение: Учебник для вузов / Б.Н. Арзамасов, В.И. Макарова, Г.Г. Мухин и др.; Под общ. Ред. Б.Н. Арзамасова, Г.Г. Мухина. - 7-е изд., стереотип. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2005. - 648 с.: ил.

2. Горчаков Г.И., Баженов Ю.М. Строительные материалы/ Г.И. Поллер В.И. «Химия на пути в третье тысячелетие». - 1979. Ратинов А. М., Иванов Д.П «Химия в строительстве». Справочник.

3. Советский Васютин Д.О. «Полимеры».

4. Энциклопедический словарь.

5. http://www.e-reading-lib.org/chapter.php/99301/51/Buslaeva_-_Materialovedenie._Shpargalka.html

6. http://museion.ru/1.5/rezina.html

7. Свободная Энциклопедия Wikipedia.

Размещено на Allbest.ru

...

Подобные документы

    Классификация, строение полимеров, их применение в различных отраслях промышленности и в быту. Реакция образования полимера из мономера - полимеризация. Формула получения полипропилена. Реакция поликонденсации. Получение крахмала или целлюлозы.

    разработка урока , добавлен 22.03.2012

    Особенности строения и свойств. Классификация полимеров. Свойства полимеров. Изготовление полимеров. Использование полимеров. Пленка. Мелиорация. Строительство. Коврики из синтетической травы. Машиностроение. Промышленность.

    реферат , добавлен 11.08.2002

    История развития науки о полимерах - высокомолекулярных соединений, веществ с большой молекулярной массой. Классификация и свойства органических пластических материалов. Примеры использования полимеров в медицине, сельском хозяйстве, машиностроении, быту.

    презентация , добавлен 09.12.2013

    Особенности химических реакций в полимерах. Деструкция полимеров под действием тепла и химических сред. Химические реакции при действии света и ионизирующих излучений. Формирование сетчатых структур в полимерах. Реакции полимеров с кислородом и озоном.

    контрольная работа , добавлен 08.03.2015

    Формула и описание полиацителена, его место в классификации полимеров. Строение, физические и химические свойства полиацителена. Способ получения полиацетилена полимеризацией ацетилена или полимерана логичными превращениями из насыщенных полимеров.

    реферат , добавлен 05.04.2014

    Физические и фазовые состояния и переходы. Термодинамика высокоэластической деформации. Релаксационные и механические свойства кристаллических полимеров. Теории их разрушения и долговечность. Стеклование, реология расплавов и растворов полимеров.

    контрольная работа , добавлен 08.03.2015

    Общая характеристика современных направлений развития композитов на основе полимеров. Сущность и значение армирования полимеров. Особенности получения и свойства полимерных композиционных материалов. Анализ физико-химических аспектов упрочнения полимеров.

    реферат , добавлен 27.05.2010

    Характеристика и классификация полимеров. Зарождение промышленности пластмасс, технологии производства полистирола. Физические и химические свойства. Надмолекулярная структура, конформация, конфигурация. Способы отверждения. Применение в промышленности.

    реферат , добавлен 30.12.2008

    Молекулярное строение полимерного вещества (химическая структура), т. е. его состав и способ соединения атомов в молекуле. Предельный случай упорядочения кристаллических полимеров. Схема расположения кристаллографических осей в кристалле полиэтилена.

    контрольная работа , добавлен 02.09.2014

    Прочностные свойства полимеров. Значения измерений на твердость, их применение для оптимизации содержания пластификатора, вида наполнителя, условий переработки. Зависимость твердости полиамида от температуры. Теплопроводность полиметилметакрилата.

Материалы, получаемые на основе полимеров . На основе полимеров получают волокна, пленки, резины, лаки, клеи, пластмассы и композиционные материалы (композиты).

Волокна получают путем продавливания растворов или расплавов полимеров через тонкие отверстия (фильеры) в пластине с последующим затвердеванием. К волокнообразующим полимерам относятся полиамиды, полиакрилонитрилы и др.

Полимерные пленки получают из расплавов полимеров методом продавливания через фильеры с щелевидными отверстиями или методом нанесения растворов полимеров на движущуюся ленту или методом каландрования" полимеров. Пленки используют в качестве электроизоляционного и упаковочного материала, основы магнитных лент и т.д.

Лаки - растворы пленкообразующих веществ в органических растворителях. Кроме полимеров лаки содержат вещества, повышающие пластичность (пластификаторы), растворимые красители, отвердители и др. Применяются для электроизоляционных покрытий, а также в качестве основы грунтовочного материала и лакокрасочных эмалей.

Клеи - композиции, способные соединять различные материалы вследствие образования прочных связей между их поверхностями и клеевой прослойкой. Синтетические органические клеи составляются на основе мономеров, олигомеров, полимеров или их смесей. В состав композиции входят отвердители, наполнители, пластификаторы и др.

Клеи подразделяются на термопластические, термореактивные и резиновые. Термопластические клеи образуют связь с поверхностью в результате затвердевания при охлаждении от температуры текучести до комнатной температуры или испарения растворителя. Термореактивные клеи образуют связь с поверхностью в результате отвердевания (образования поперечных сшивок), резиновые клеи - в результате вулканизации.

В качестве полимерной основы термореактивных клеев служат фенол- и мочевино-формальдегидные и эпоксидные смолы, полиуретаны, полиэфиры и другие полимеры, термопластичных клеев - полиакрилы, полиамиды, поливинилацетали, поливинилхлорид и другие полимеры. Прочность клеевого слоя например, фенолоформальдегидных клеев (БФ, ВК) при 20 °С при сдвиге лежит в пределах 15 до 20 МПа, эпоксидных - до 36 МПа.

Пластмассы - это материалы, содержащие полимер, который при формировании изделия находится в вязкотекучем состоянии, а при его эксплуатации - в стеклообразном. Все пластмассы подразделяются на реактопласты и термопласты. При формовании реактопластов происходит необратимая реакция отвердевания, заключающаяся в образовании сетчатой структуры. К реактопластам относятся материалы на основе фенолоформальдегидных, мочевиноформальдегидных, эпоксидных и других смол. Термопласты способны многократно переходить в вязкотекучее состояние при нагревании и стеклообразное - при охлаждении. К термопластам относятся материалы на основе полиэтилена, политетрафторэтилена, полипропилена, поливинилхлорида, полистирола, полиамидов и других полимеров.

Кроме полимеров в состав пластмасс входят пластификаторы, красители и наполнители. Пластификаторы, например, диоктилфталат, дибутилсебацинат, хлорированный парафин, снижают температуру стеклования и повышают текучесть полимера. Антиоксиданты замедляют деструкцию полимеров. Наполнители улучшают физико-механические свойства полимеров. В качестве наполнителей применяют порошки (графит, сажа, мел, металл и т.д.), бумагу, ткань. Особую группу пластмасс составляют композиты.

Композиционные материалы (композиты) - состоят из основы (органической, полимерной, углеродной, металлической, керамической), армированной наполнителем, в виде высокопрочных волокон или нитевидных кристаллов. В качестве основы используются синтетические смолы (алкидные, фенолоформальде-гидные, эпоксидные и др.) и полимеры (полиамиды, фторопласты, силиконы и др.).

Армирующие волокна и кристаллы могут быть металлическими, полимерными, неорганическими (например, стеклянными, карбидными, нитридными, борными). Армирующие наполнители в значительной степени определяют механические, теплофизические и электрические свойства полимеров. Многие композиционные полимерные материалы по прочности не уступают металлам. Композиты на основе полимеров, армированных стекловолокном (стеклопластики), обладают высокой механической прочностью (прочностью при разрыве 1300-2500 МПа) и хорошими электроизоляционными свойствами. Композиты на основе полимеров, армированных углеродными волокнами (углепластики), сочетают высокую прочность и вибропрочность с повышенной теплопроводностью и химической стойкостью. Боропластики (наполнители - борные волокна) имеют высокую прочность, твердость и низкую ползучесть.

Композиты на основе полимеров используются как конструкционные, электро- и теплоизоляционные, коррозионностойкие, антифрикционные материалы в автомобильной, станкостроительной, электротехнической, авиационной, радиотехнической, горнорудной промышленности, космической технике, химическом машиностроении и строительстве.

Редокситы. Широкое применение получили полимеры с окислительно-восстановительными свойствами - редокситы (с редокс-группами или редоксиониты).

Применение полимеров. В настоящее время широко применяется большое число различных полимеров. Физические и химические свойства некоторых термопластов приведены в табл. 14.2 и 14.3.

Полиэтилен [-СН2-СН2-]n - термопласт, получаемый методом радикальной полимеризации при температуре до 320 °С и давлении 120-320 МПа (полиэтилен высокого давления) или при давлении до 5 МПа с использованием комплексных катализаторов (полиэтилен низкого давления). Полиэтилен низкого давления имеет более высокие прочность, плотность, эластичность и температуру размягчения, чем полиэтилен высокого давления. Полиэтилен химически стоек во многих средах, но под действием окислителей стареет (табл. 14.3). Хороший диэлектрик (см. табл. 14.2), может эксплуатироваться в пределах температур от -20 до +100 °С. Облучение может повысить теплостойкость полимера. Из полиэтилена изготавливают трубы, электротехнические изделия, детали радиоаппаратуры, изоляционные пленки и оболочки кабелей (высокочастотных, телефонных, силовых), пленки, упаковочный материал, заменители стеклотары.

Полипропилен [-СН(СН3)-СН2-]n - кристаллический термопласт, получаемый методом стереоспецифической полимеризации. Обладает более высокой термостойкостью (до 120-140 °С), чем полиэтилен. Имеет высокую механическую прочность (см. табл. 14.2), стойкость к многократным изгибам и истиранию, эластичен. Применяется для изготовления труб, пленок, аккумуляторных баков и др.

Термопласт, получаемый радикальной полимеризацией стирола.

Полимер стоек к действию окислителей, но неустойчив к воздействию сильных кислот, он растворяется в ароматических растворителях (см. табл. 14.3).

Таблица 14.2. Физические свойства некоторых полимеров

Свойство

Полиэтилен

Полипропилен

Полисти-рол

Поливини-хлорид

Полимети-метакрилат

Политетра-фторэтилен

Плотность, г/см3

Температура стеклования, °С

Предел прочности при растяжении, МПа

Относительное удлинение при разрыве, %

Удельное электрическое сопротивление, Ом×см

Диэлектрическая проницаемость

* Температура плавления.

Таблица 14.3 Химические свойства некоторых полимеров

Свойство

Полимеры

Полиэти-лен

Полистирол

Поливини-хлорид

Полимети-метакрилат

Силиконы

Фторо-пласты

Устойчивость к дейсвию:

а) растворов кислот

б) растворов щелочей

в) окислителей

Растворимость в углеводородах

а) алифатических

б) ароматических

Растворители

Набухает

Растворяется при нагреве

Бензол при нагревании

Стоек в слабых растворах

Стоек в слабых растворах

Набухает

Растворяется

Спирты, эфиры, стирол

Не растворяется

Не растворяется

Тетрагидрофуран, дихлорэтан

Стоек в мини-ральных кислотах

Растворим

Дихлорэтан, кетоны

Не стойки

Растворяются

Растворимы

Эфиры, хлороугле-водороды

Растворы некоторых комлексов

Полистирол обладает высокой механической прочностью и диэлектрическими свойствами (см. табл. 14.2) и используется как высококачественный электроизоляционный, а также конструкционный и декоративно-отделочный материал в приборостроении, электротехнике, радиотехнике, бытовой технике. Гибкий эластичный полистирол, получаемый вытяжкой в горячем состоянии, применяется для оболочек кабелей и проводов. На основе полистирола также выпускают пенопласты.

Поливинилхлорид [-CH2-CHCl-]n - термопласт, изготовляемый полимеризацией винилхлорида, стоек к воздействию кислот, щелочей и окислителей (см. табл. 14.3). Растворим в циклогексаноне, тетрагидрофуране, ограничено - в бензоле и ацетоне. Трудногорюч, механически прочен (см. табл. 14.2). Диэлектрические свойства хуже, чем у полиэтилена. Применяется как изоляционный материал, который можно соединять сваркой. Из него изготовляют грампластинки, плащи, трубы и др. предметы.

Политетрафторэтилен (фторопласт)[-CF2-CF2-]n - термопласт, получаемый методом радикальной полимеризации тетрафторэ-тилена. Обладает исключительной химической стойкостью к кислотам, щелочам и окислителям. Прекрасный диэлектрик. Имеет очень широкие температурные пределы эксплуатации (от -270 до +260 °С). При 400 °С разлагается с выделением фтора, не смачивается водой. Фторопласт используется как химически стойкий конструкционный материал в химической промышленности. Как лучший диэлектрик применяется в условиях, когда требуется сочетание электроизоляционных свойств с химической стойкостью. Кроме того, его используют для нанесения антифрикционных, гидрофобных и защитных покрытий, покрытий сковородок.

Полиметилметакрилат (плексиглаз)

Термопласт, получаемый методом полимеризации метилметакрилата. Механически прочен (см. табл. 14.2), стоек к действию кислот, атмосферостоек. Растворяется в дихлорэтане, ароматических углеводородах, кетонах, сложных эфирах. Бесцветен и оптически прозрачен. Применяется в электротехнике, как конструкционный материал, а также как основа клеев.

Полиамиды - термопласты, содержащие в основной цепи амидогруппу -NHCO-, например поли-e-капрон [-NH-(CH2)5-CO-]n, полигексаметиленадипинамид (найлон) [-NH-(CH2)5-NH-CO-(CH2)4-CO-]n, полидодеканамид [-NH-(CH2)11-CO-]n и др. Их получают как поликонденсацией, так и полимеризацией. Плотность полимеров 1,0¸1,3 г/см3. Характеризуются высокой прочностью, износостойкостью, диэлектрическими свойствами. Устойчивы в маслах, бензине, разбавленных кислотах и концентрированных щелочах. Применяются для получения волокон, изоляционных пленок, конструкционных, антифрикционных и электроизоляционных изделий.

Полиуретаны - термопласты, содержащие в основной цепи группы -NH(CO)O-, а также эфирные, карбаматные и др. Получают взаимодействием изоциантов (соединений, содержащих одну или несколько NCO-гpyпп) с полиспиртами, например с гликолями и глицерином. Устойчивы к действию разбавленных минеральных кислот и щелочей, масел и алифатических углеводородов.

Выпускаются в виде пенополиуретанов (поролонов), эластомеров, входят в составы лаков, клеев, герметиков. Используются для тепло- и электроизоляции, в качестве фильтров и упаковочного материала, для изготовления обуви, искусственной кожи, резинотехнических изделий. Полиэфиры -полимеры с общей формулой HO[-R-O-]nH или [-OC-R-COO-R"-O-]n. Получают либо полимеризацией циклических оксидов, например этиленоксида, лактонов (сложных эфиров окси-кислот), либо поликонденсацией гликолей, диэфиров и других соединений. Алифатические полиэфиры устойчивы к действию растворов щелочей, ароматические - также к действию растворов минеральных кислот и солей.

Применяются в производстве волокон, лаков и эмалей, пленок, коагулянтов и флотореагентов, компонентов гидравлических жидкостей и др.

Синтетические каучуки (эластомеры) получают эмульсионной или стереоспецифической полимеризацией. При вулканизации превращаются в резину, для которой характерна высокая эластичность. Промышленность выпускает большое число различных синтетических каучуков (СК), свойства которых зависят от типа мономеров. Многие каучуки получают совместной полимеризацией двух и более мономеров. Различают СК общего и специального назначения. К СК общего назначения относят бутадиеновый [-СН2-СН=СН-СН2-]n и бутадиенстирольный [-СН2-СН=СН-СН2-]n-[-СН2-СН(С6Н5)-]n. Резины на их основе используются в изделиях массового назначения (шины, защитные оболочки кабелей и проводов, ленты и т.д.). Из этих каучуков также получают эбонит, широко используемый в электротехнике. Резины, получаемые из СК специального назначения, кроме эластичности характеризуются некоторыми специальными свойствами, например бензо- и маслостойкостью (бутадиеннитрильный СК [-CH2-CH=CH-CH2-]n-[-CH2-CH(CN)-]n), бензо-, масло- и теплостойкостью, негорючестью (хлоропреновый СК [-СН2-С(Сl)=СН-СН2-]n), износостойкостью (полиуретановый и др.), тепло-, свето-, озоностойкостью (бутилкаучук) [-C(СН3)2-CH2-]n –[-CH2C(CH3)=СН-СН2-]m.

К наиболее применяемым относятся бутадиенстирольный (более 40%), бутадиеновый (13%), изопреновый (7%), хлоропреновый (5%) каучуки и бутилкаучук (5%). Основная доля каучуков (60-70%) идет на производство шин, около 4% - на изготовление обуви.

Кремнийорганические полимеры (силиконы) -содержат атомы кремния в элементарных звеньях макромолекул, например:


Большой вклад в разработку кремнийорганических полимеров внес российский ученый К.А.Андрианов. Характерной особенностью этих полимеров является высокая тепло- и морозостойкость, эластичность. Силиконы не стойки к воздействию щелочей и растворяются во многих ароматических и алифатических растворителях (см. табл. 14.3). Кремнийорганические полимеры используются для получения лаков, клеев, пластмасс и резины. Кремнийорганические каучуки [-Si(R2)-O-]n, например диметилсилоксановый и метил винил сил оксановый имеют плотность 0,96-0,98 г/см3, температуру стеклования 130°С. Растворимы в углеводородах, галогеноуглеводородах, эфирах. Вулканизируются с помощью органических пероксидов. Резины могут эксплуатироваться при температуре от -90 до +300°С, обладают атмосферостойкостью, высокими электроизоляционными свойствами (r = 1015-1016 Ом×см). Применяются для изделий, работающих в условиях большого перепада температур, например для защитных покрытий космических аппаратов и т.д.

Феноло- и аминоформальдегидные смолы получают поликонденсацией формальдегида с фенолом или аминами (см. §14.2). Это термореактивные полимеры, у которых в результате образования поперечных связей образуется сетчатая пространственная структура, которую невозможно превратить в линейную структуру, т.е. процесс идет необратимо. Их используют как основу клеев, лаков, ионитов, пластмасс.

Пластмассы на основе фенолоформальдегидных смол получили название фенопластов, на основе мочевино-формальдегидных смол -аминопластов. Наполнителями фенопластов и аминопластов служит бумага или картон (гетинакс), ткань (текстолит), древесина, кварцевая и слюдяная мука и др. Фенопласты стойки к действию воды, растворов кислот, солей и оснований, органических растворителей, трудногорючи, атмосферостойки и являются хорошими диэлектриками. Используются в производстве печатных плат, корпусов электро- и радиотехнических изделий, фольгированных диэлектриков. Аминопласты характеризуются высокими диэлектрическими и физико-механическими свойствами, устойчивы к действию света и УФ-лучей, трудногорючи, стойки к действию слабых кислот и оснований и многих растворителей. Они могут быть окрашены в любые цвета. Применяются для изготовления электротехнических изделий (корпусов приборо