Материалы        16.10.2019   

3 примера алкенов с молекулярной массой. Гидратация алкенов: реакция и уравнения

В органической химии можно встретить углеводородные вещества с разным количеством углерода в цепи и C=C-связью. Они являются гомологами и называются алкенами. Из-за своего строения они химически более активны, чем алканы. Но какие именно реакции для них характерны? Рассмотрим их распространение в природе, разные способы получения и применение.

Что из себя представляют?

Алкены, которые также называются олефинами (маслянистые) получили свое название от этен-хлорида, производного первого представителя этой группы. У всех алкенов есть хотя бы одна двойная C=C-связь. C n H 2n - формула всех олефинов, а название образовывается от алкана с таким же количеством углеродов в молекуле, только суффикс -ан меняется на -ен. Арабской цифрой в конце названия через дефис обозначают номер углерода, от которого начинается двойная связь. Рассмотрим основные алкены, таблица поможет вам запомнить их:

Если молекулы имеют простое неразветвленное строение, то добавляют суффикс -илен, это также отражено в таблице.

Где их можно встретить?

Так как реакционная способность алкенов весьма высока, их представители в природе встречаются крайне редко. Принцип жизни молекулы олефинов — "давай дружить". Нет вокруг других веществ — не беда, будем дружить между собой, образуя полимеры.

Но они есть, и небольшое количество представителей входит в состав сопутствующего нефтяного газа, а высших — в нефти, добываемой на территории Канады.

Самый первый представитель алкенов этен — это гормон, стимулирующий созревание плодов, поэтому его в небольших количествах синтезируют представители флоры. Есть алкен цис-9-трикозен, который у самок мухи домашней играет роль полового аттрактанта. Еще его называют мускалур. (Аттрактант — вещества природного или синтетического происхождения, которое вызывает влечение к источнику запаха у другого организма). С точки зрения химии, алкен этот выглядит так:

Так как весьма ценным сырьем являются все алкены, способы получения их искусственным путем весьма разнообразны. Рассмотрим наиболее распространенные.

А если нужно много?

В промышленности класс алкенов, в основном, получается при крекинге, т.е. расщеплении молекулы под воздействием высоких температур, высших алканов. Для реакции необходим нагрев в диапазоне от 400 до 700 °C. Расщепляется алкан так, как ему захочется, образуя алкены, способы получения которых мы рассматриваем, с большим количеством вариантов строения молекул:

C 7 H 16 -> CH 3 -CH=CH 2 + C 4 H 10.

Еще один распространенный способ называется дегидрирование, при котором от представителя ряда алкана в присутствии катализатора отделяют молекулу водорода.

В лабораторных условиях алкены и способы получения отличаются, они основаны на реакциях элиминирования (отщепления группы атомов без их замещения). Чаще всего элиминируются атомы воды из спиртов, галогены, водород или галогенводород. Наиболее распространенный способ получения алкенов — из спиртов в присутствии кислоты, как катализатора. Возможно использование и других катализаторов

Все реакции элиминирования подчинены правилу Зайцева, гласящему:

Атом водорода отщепляется от того углерода, соседствующего с углеродом, несущим группу -OH, у которого меньше водородов.

Применив правило, ответьте, какой продукт реакции будет преобладать? Позже вы узнаете, правильно ли ответили.

Химические свойства

Алкены активно реагируют с веществами, разрывая свою пи-связь (еще одно название связи C=C). Ведь она не такая прочная, как одинарная (сигма-связь). Углеводород из ненасыщенного превращается в насыщенный, не образуя других веществ после реакции (присоединение).

  • присоединение водорода (гидрирование). Присутствие катализатора и нагревания нужна для ее прохождения;
  • присоединение молекул галогенов (галогенирование). Является одной из качественных реакций на пи-связь. Ведь при реакции алкенов с бромной водой, она из бурой становится прозрачной;
  • реакция с галогенводородами (гидрогалогенирование);
  • присоединение воды (гидратация). Условиями прохождения реакции является нагревание и присутствие катализатора (кислоты);

Реакции несимметричных олефинов с галогенводородами и водой подчиняются правилу Марковникова. А значит, водород присоединится к тому углероду из двойной углерод-углеродной связи, у которого уже больше атомов водорода.

  • горение;
  • неполное окисление каталитическое. Продуктом являются циклические оксиды;
  • реакция Вагнера (окисление перманганатом в нейтральной среде). Эта реакция алкенов — еще одна качественная C=C-связь. При протекании розовый раствор марганцовки обесцвечивается. Если ту же реакцию провести в соединенной кислой среде, продукты будут уже другими (карбоновые кислоты, кетоны, углекислый газ);
  • изомеризация. Характерны все виды: цис- и транс-, перемещение двойной связи, циклизация, скелетная изомеризация;
  • полимеризация — главное свойство олефинов для промышленности.

Применение в медицине

Большое практическое значение имеют продукты реакции алкенов. Многие из них используются в медицине. Из пропена получают глицерин. Этот многоатомный спирт является прекрасным растворителем, причем, если его использовать вместо воды, растворы будут более концентрированными. В медицинских целях в нем растворяют алкалоиды, тимол, йод, бром и др. Также глицерин применяют при приготовлении мазей, паст и кремов. Он предотвращает их высыхание. Сам по себе глицерин является антисептиком.

При реакции с хлороводородом получаются производные, которые применяются как местная анестезия при нанесении на кожу, а также для кратковременного наркоза при незначительных хирургических вмешательствах, при помощи ингаляций.

Алкадиены — это алкены с двумя двойными связями в одной молекуле. Основное их применение — производство синтетического каучука, из которого потом изготавливают различные грелки и спринцовки, зонды и катетеры, перчатки, соски и многое другое, что просто незаменимо при уходе за больными.

Применение в промышленности

Вид промышленности Что применяют Каким образом могут использовать
Сельское хозяйство этен ускоряет созревание овощей и фруктов, дефолиация растений, пленки для теплиц
Лако-красочная этен, бутен, пропен и др. для получения растворителей, эфиров, сольвента
Машиностроение 2-метилпропен, этен производство синтетического каучука, смазочные масла, антифриз
Пищевая промышленность этен

производство тефлона, этилового спирт, уксусная кислота

Химическая промышленность этен, полипропилен получают спирты, полимеры (поливинилхлорид, полиэтилен, поливинилацетат, полиизобтилен, уксусный альдегид
Горная промышленность этен и др. взрывчатые вещества

Более широкое применение нашли алкены и их производные в промышленности. (Где и как используются алкены, таблица выше).

Это лишь малая часть использования алкенов и их производных. С каждым годом потребность в олефинах только возрастает, а значит, возрастает потребность и в их производстве.

Физические свойства алкенов похожи на свойства алканов, хотя все они имеют несколько более низкие температуры плавления и кипения, чем соответствующие алканы. Например, пентан имеет температуру кипения 36 °С, а пентен-1 - 30 °С. При обычных условиях алкены С 2 — С 4 - газы. С 5 – С 15 - жидкости, начиная с C 16 - твердые вещества. Алкены не растворимы в воде, хорошо растворимы в органических растворителях.

В природе алкены встречаются редко. Поскольку алкены являются ценным сырьем для промышленного органического синтеза, разработаны многие способы их получения.

1. Основным промышленным источником алкенов служит крекинг алканов, входящих в состав нефти:

3. В лабораторных условиях алкены получают по реакциям отщепления (элиминирования), при которых от соседних атомов углерода отщепляются два атома или две группы атомов, и образуется дополнительная p -связь. К таким реакциям относятся следующие.

1) Дегидратация спиртов происходит при их нагревании с водоотнимающими средствами, например с серной кислотой при температуре выше 150 °С:

При отщеплении Н 2 O от спиртов, НВr и HCl от алкилгалогенидов атом водорода преимущественно отщепляется от того из соседних атомов углерода, который связан с наименьшим числом атомов водорода (от наименее гидрогенизированного атома углерода). Эта закономерность носит название правила Зайцева .

3) Дегалогенирование происходит при нагревании дигалогенидов, имеющих атомы галогена у соседних атомов углерода, с активными металлами:

CH 2 Br —CHBr —CH 3 + Mg → СН 2 =СН-СН 3 + Mg Вr 2 .

Химические свойства алкенов определяются наличием в их молекулах двойной связи. Электронная плотность p -связи достаточно подвижна и легко вступает в реакции с электрофильными частицами. Поэтому многие реакции алкенов протекают по механизму электрофильного присоединения , обозначаемому символом A E (от англ, addition electrophilic ). Реакции злектрофильного присоединения это ионные процессы, протекающие в несколько стадий.

На первой стадии электрофильная частица (чаще всего это бывает протон H +) взаимодействует с p -электронами двойной связи и образует p -комплекс, который затем превращается в карбокатион путем образования ковалентной s -связи между электрофильной частицей и одним из атомов углерода:

алкен p -комплекс карбокатион

На второй стадии карбокатион реагирует с анионом X — , образуя вторую s -связь за счет электронной пары аниона:

Ион водорода в реакциях электрофильного присоединения присоединяется к тому из атомов углерода при двойной связи, на котором больше отрицательный заряд. Распределение зарядов определяется смещением p -электронной плотности под влиянием заместителей: .

Электронодонорные заместители, проявляющие +I -эффект, смещают p -электронную плотность к более гидрогенизированному атому углерода и создают на нем частичный отрицательный заряд. Этим объясняется правило Марковникова : при присоединении полярных молекул типа НХ(X = Hal , ОН, CN и т.п.) к несимметричным алкенам водород преимущественно присоединяется к более гидрогенизированному атому углерода при двойной связи.

Рассмотрим конкретные примеры реакций присоединения.

1) Гидрогалогенирование . При взаимодействии алкенов с галогеноводородами (HCl , НВr ) образуются алкилгалогениды:

СН 3 -СН=СН 2 + НВr ® СН 3 -СНВr-СН 3 .

Продукты реакции определяются правилом Марковникова.

Следует, однако, подчеркнуть, что в присутствии какого-либо органического пероксида полярные молекулы НХ реагируют с алкенами не по правилу Марковникова:

R-O-O-R
СН 3 -СН=СН 2 + НВr СН 3 -СН 2 -СН 2 Вr

Это связано с тем, что присутствие перекиси обусловливает радикальный, а не ионный механизм реакции.

2) Гидратация . При взаимодействии алкенов с водой в присутствии минеральных кислот (серной, фосфорной) образуются спирты. Минеральные кислоты выполняют роль катализаторов и являются источниками протонов. Присоединение воды также идет по правилу Марковникова:

СН 3 -СН=СН 2 + НОН ® СН 3 -СН(ОН)-СН 3 .

3) Галогенирование . Алкены обесцвечивают бромную воду:

СН 2 =СН 2 + Вr 2 ® ВrСН 2 -СН 2 Вr.

Эта реакция является качественной на двойную связь.

4) Гидрирование . Присоединение водорода происходит под действием металлических катализаторов:

где R = Н, СН 3 , Cl , С 6 Н 5 и т.д. Молекула CH 2 =CHR называется мономером, полученное соединение - полимером , число n-степень полимеризации.

Полимеризация различных производных алкенов дает ценные промышленные продукты: полиэтилен, полипропилен, поливинилхлорид и другие.

Кроме присоединения, для алкенов характерны также реакции окисления. При мягком окислении алкенов водным раствором перманганата калия (реакция Вагнера ) образуются двухатомные спирты:

ЗСН 2 =СН 2 + 2КМn О 4 + 4Н 2 О ® ЗНОСН 2 -СН 2 ОН + 2MnO 2 ↓ + 2KOH .

В результате протекания этой реакции фиолетовый раствор перманганата калия быстро обесцвечивается и выпадает коричневый осадок оксида марганца (IV ). Эта реакция, как и реакция обесцвечивания бромной воды, является качественной на двойную связь. При жестком окислении алкенов кипящим раствором перманганата калия в кислой среде происходит полный разрыв двойной связи с образованием кетонов, карбоновых кислот или СО 2 , например:

[О]
СН 3 -СН=СН-СН 3 2СН 3 -СООН

По продуктам окисления можно установить положение двойной связи в исходном алкене.

Как и все другие углеводороды, алкены горят, и при обильном доступе воздуха образуют диоксид углерода и воду:

С n Н 2 n + Зn /2О 2 ® n СО 2 + n Н 2 О.

При ограниченном доступе воздуха горение алкенов может приводить к образованию монооксида углерода и воды:

С n Н 2n + nО 2 ® nCO + nH 2 O .

Если смешать алкен с кислородом и пропустить эту смесь над нагретым до 200°С серебряным катализатором, то образуется оксид алкена (эпоксиалкан), например:

При любых температурах алкены окисляются озоном (озон более сильный окислитель, чем кислород). Если газообразный озон пропускают через раствор какого-либо алкена в тетрахлор-метане при температурах ниже комнатной, то происходит реакция присоединения, и образуются соответствующие озониды (циклические перекиси). Озониды очень неустойчивы и могут легко взрываться. Поэтому обычно их не выделяют, а сразу после получения разлагают водой - при этом образуются карбонильные соединения (альдегиды или кетоны), строение которых указывает на строение подвергавшегося озонированию алкена.

Низшие алкены - важные исходные вещества для промышленного органического синтеза. Из этилена получают этиловый спирт, полиэтилен, полистирол. Пропен используют для синтеза полипропилена, фенола, ацетона, глицерина.

Тема урока: Алкены. Получение, химические свойства и применение алкенов.

Цели и задачи урока:

  • рассмотреть конкретные химические свойства этилена и общие свойства алкенов;
  • углубить и конкретизировать понятия о?-связи, о механизмах химических реакций;
  • дать первоначальные представления о реакциях полимеризации и строении полимеров;
  • разобрать лабораторные и общие промышленные способы получения алкенов;
  • продолжить формирование умения работать с учебником.

Оборудование: прибор для получения газов, раствор КМnO 4 , этиловый спирт, концентрированная серная кислота, спички, спиртовка, песок, таблицы «Строение молекулы этилена», «Основные химические свойства алкенов», демонстрационные образцы «Полимеры».

ХОД УРОКА

I. Организационный момент

Мы продолжаем изучение гомологического ряда алкенов. Сегодня нам предстоит рассмотреть способы получения, химические свойства и применение алкенов. Мы должны охарактеризовать химические свойства, обусловленные двойной связью, получить первоначальные представления о реакциях полимеризации, рассмотреть лабораторные и промышленные способы получения алкенов.

II. Активизация знаний учащихся

  1. Какие углеводороды называются алкенами?
  1. Каковы особенности их строения?
  1. В каком гибридном состоянии находятся атомы углерода, образующие двойную связь в молекуле алкена?

Итог: алкены отличаются от алканов наличием в молекулах одной двойной связи, которая обуславливает особенности химических свойств алкенов, способов их получения и применения.

III. Изучение нового материала

1. Способы получения алкенов

Составить уравнения реакций, подтверждающих способы получения алкенов

– крекинг алканов C 8 H 18 ––> C 4 H 8 + C 4 H 10 ; (термический крекинг при 400-700 o С)
октан бутен бутан
– дегидрирование алканов C 4 H 10 ––> C 4 H 8 + H 2 ; (t, Ni)
бутан бутен водород
– дегидрогалогенирование галогеналканов C 4 H 9 Cl + KOH ––> C 4 H 8 + KCl + H 2 O;
хлорбутан гидроксид бутен хлорид вода
калия калия
– дегидрогалогенирование дигалогеналканов
– дегидратация спиртов С 2 Н 5 ОН ––> С 2 Н 4 + Н 2 О (при нагревании в присутствии концентрированной серной кислоты)
Запомните! При реакиях дегидрирования, дегидратации, дегидрогалогенирования и дегалогенирования нужно помнить, что водород преимущественно отрывается от менее гидрогенизированных атомов углерода (правило Зайцева, 1875 г.)

2. Химические свойства алкенов

Характер углерод – углеродной связи определяет тип химических реакций, в которые вступают органические вещества. Наличие в молекулах этиленовых углеводородов двойной углерод – углеродной связи обуславливает следующие особенности этих соединений:
– наличие двойной связи позволяет отнести алкены к ненасыщенным соединениям. Превращение их в насыщенные возможно только в результате реакций присоединения, что является основной чертой химического поведения олефинов;
– двойная связь представляет собой значительную концентрацию электронной плотности, поэтому реакции присоединения носят электрофильный характер;
– двойная связь состоит из одной - и одной -связи, которая достаточно легко поляризуется.

Уравнения реакций, характеризующих химические свойства алкенов

а) Реакции присоединения

Запомните! Реакции замещения свойственны алканам и высшим циклоалканам, имеющим только одинарные связи, реакции присоединения – алкенам, диенам и алкинам, имеющим двойные и тройные связи.

Запомни! Возможны следующие механизмы разрыва -связи:

а) если алкены и реагент – неполярные соединения, то -связь разрывается с образованием свободного радикала:

H 2 C = CH 2 + H: H ––> + +

б) если алкен и реагент – полярные соединения, то разрыв -связи приводит к образование ионов:

в) при соединении по месту разрыва -связи реагентов, содержащих в составе молекулы атомы водорода, водород всегда присоединяется к более гидрированному атому углерода (правило Морковникова, 1869 г.).

– реакция полимеризации nCH 2 = CH 2 ––> n – CH 2 – CH 2 –– > (– CH 2 – CH 2 –)n
этен полиэтилен

б) реакция окисления

Лабораторный опыт. Получить этилен и изучить его свойства (инструкция на столах учащихся)

Инструкция по получению этилена и опытов с ним

1. Поместите в пробирку 2 мл концентрированной серной кислоты, 1 мл спирта и небольшое количество песка.
2. Закройте пробирку пробкой с газоотводной трубкой и нагрейте в пламени спиртовки.
3. Выделяющийся газ пропустите через раствор с перманганатом калия. Обратите внимание на изменение цвета раствора.
4. Подожгите газ у конца газоотводной трубки. Обратите внимание на цвет пламени.

– алкены горят светящимся пламенем. (Почему?)

C 2 H 4 + 3O 2 ––> 2CO 2 + 2H 2 O (при полном окислении продуктами реакции являются углекислый газ и вода)

Качественная реакция: «мягкое окисление (в водном растворе)»

– алкены обесцвечивают раствор перманганата калия (реакция Вагнера)

При более жёстких условиях в кислой среде продуктами реакции могут быть карбоновые кислоты, например (в присутствии кислот):

CH 3 – CH = CH 2 + 4 [O] ––> CH 3 COOH + HCOOH

– каталичесикое окисление

Запомните главное!

1. Непредельные углеводороды активно вступают в реакции присоединения.
2. Реакционная активность алкенов связана с тем, что - связь под действием реагентов легко разрывается.
3. В результате присоединения происходит переход атомов углерода из sp 2 – в sp 3 - гибридное состояние. Продукт реакции имеет предельный характер.
4. При нагревании этилена, пропилена и других алкенов под давление или в присутствии катализатора их отдельные молекулы соединяются в длинные цепочки – полимеры. Полимеры (полиэтилен, полипропилен) имеют большое практическое значение.

3. Применение алкенов (сообщение учащегося по следующему плану).

1 – получение горючего с высоким октановым числом;
2 – пластмасс;
3 – взрывчатых веществ;
4 – антифризов;
5 – растворителей;
6 – для ускорения созревания плодов;
7 – получение ацетальдегида;
8 – синтетического каучука.

III. Закрепление изученного материала

Домашнее задание: §§ 15, 16, упр. 1, 2, 3 стр. 90, упр. 4, 5 стр. 95.

АЛКЕНЫ

Углеводороды, в молекуле которых помимо простых σ-связей углерод - углерод и углерод - водород имеются углерод-угле­родные π-связи, называются непредельными. Так как образование π-связи формально эквивалентно потере моле­кулой двух атомов водорода, то непредельные углеводороды содержат на 2п атомов водорода меньше, чем предельные, где п - число π -связей:

Ряд, члены которого отличаются друг от друга на (2Н) n , называется изологическим рядом. Так, в приведенной выше схеме изологами являются гексаны, гексены, гексадиены, гексины, гексатриены и т. д.

Углеводороды, содержащие одну π-связь (т. е. двойную связь), называются алкенами (олефинами) или, по первому члену ряда - этилену, этиленовыми углеводородами. Общая формула их гомологического ряда С п Н 2л.

1. Номенклатура

В соответствии с правилами ИЮПАК при построении назва­ний алкенов наиболее длинная углеродная цепь, содержащая двойную связь, получает название соответствующего алкана, в котором окончание -ан заменено на -ен. Эта цепь нумеруется таким образом, чтобы углеродные атомы, участвующие в образовании двойной связи, получили номера, наименьшие из возможных:

Радикалы называются и нумеруются как и в случае алканов.

Для алкенов сравнительно простого строения разрешается применять более простые названия. Так, некоторые наиболее часто встречающиеся алкены называют, добавляя суффикс -ен к названию углеводородного радикала с тем же углеродным скелетом:

Углеводородные радикалы, образованные из алкенов, по­лучают суффикс -енил. Нумерация в радикале начинается от углеродного атома, имеющего свободную валентность. Однако для простейших алкенильных радикалов вместо систематиче­ских названий разрешается использовать тривиальные:

Водородные атомы, непосредственно связанные с ненасы­щенными атомами углерода, образующими двойную связь, часто называют винилъными атомами водорода,

2. Изомерия

Помимо изомерии углеродного скелета, в ряду алкенов по­является еще и изомерия положения двойной связи. В общем виде изомерия такого типа - изомерия положения заместителя (функции) - наблюдается во всех случаях, когда в моле­куле имеются какие-либо функциональные группы. Для алкана С 4 Н 10 возможны два структурных изомера:

Для алкена С 4 Н 8 (бутена) возможны три изомера:

Бутен-1 и бутен-2 являются изомерами положения функ­ции (в данном случае ее роль выполняет двойная связь).

Пространственные изомеры различаются пространственным расположением заместителей относительно друг друга и называются цис-изомерами, если заместители расположены по одну сторону от двойной связи, и транс-изомерами, если по разные стороны:

3. Строение двойной связи

Энергия разрыва молекулы по двойной связи С=С равна 611 кДж/моль; так как энергия σ-связи С-С рав­на 339 кДж/моль, то энергия разрыва π -связи равна лишь 611-339 = 272 кДж/моль. π -электроны значительно легче σ -электронов поддаются влиянию, например, поляризующих растворителей или воздействию любых атакующих реагентов. Это объясняется различием в симметрии распреде­ления электронного облака σ- и π-электронов. Максимальное перекрывание р-орбиталей и, следовательно, минимальная сво­бодная энергия молекулы реализуются лишь при плоском стро­ении винильного фрагмента и при укороченном расстоянии С-С, равном 0,134нм, т.е. значительно меньшем, чем рас­стояние между углеродными атомами, связанными простой связью (0,154 нм). С поворотом «половинок» молекулы относи­тельно друг друга по оси двойной связи степень перекрывания орбиталей снижается, что связано с затратой энергии. Следст­вием этого является отсутствие свободного вращения по оси двойной связи и существование геометрических изомеров при соответствующем замещении у атомов углерода.

4. Физические свойства

Как и алканы, низшие гомологи ряда простейших алкенов при обычных условиях - газы, а начиная с С 5 - низкокипя­щие жидкости.

Все алкены, как и алканы, практически нерастворимы в воде и хорошо растворимы в других органических растворите­лях, за исключением метилового спирта; все они имеют мень­шую плотность, чем вода.

5. Химические свойства

При рассмотрении реакционной способности сложных ор­ганических соединений действует общий принцип. В боль­шинстве реакций участвует не «инертный» углеводородный радикал, а имеющиеся функциональные группы и их ближай­шее окружение. Это естественно, ибо большинство связей менее прочны, чем связи С-С и С-Н, и, кроме того, связи в функци­ональной группе и вблизи нее наиболее поляризованы.

Естественно ожидать, что реакции алкенов будут проходить по двойной связи, которую тоже можно считать функциональ­ной группой, а следовательно, будут реакциями присоедине­ния, а не реакциями замещения, характерными для ранее рас­смотренных алканов.

Присоединение водорода

Присоединение водорода к алкенам приводит к образованию алканов:

Присоединение водорода к этиленовым соединениям в от­сутствие катализаторов происходит лишь при высоких темпе­ратурах, при которых часто начинается разложение органиче­ских веществ. Значительно легче присоединение водорода идет в присутствии катализа­торов. Катализаторами служат металлы платиновой группы в мелкодисперсном состоянии, сама платина и особен­но палладий - уже при обычной температуре. Большое прак­тическое значение имело открытие Сабатье, применившего специально приготовленный мелкораздробленный никель при температуре 150-300°С и в многочисленных работах пока­завшего универсальность этого катализатора для целого ряда реакций восстановления.

Присоединение галогенов

Галогены присоединяются к алкенам с образованием дигалогенопроизводных, содержащих атомы галогена у соседних атомов углерода:

На первой стадии этой реакции происходит взаимодействие между π-электронами двойной связи и электрофильной частицей галогена с образованием π-комплекса (I). Далее π-комплекс перегруппировывается в ониевый (бромониевый) ион (II) с ощеплением аниона галогена, находящийся в равновесии с карбкатионом (III). Затем анион атакует ониевый ион с образованием продукта присоединения (IV):

Атака анионом бромониевого иона (II) с образованием дибромида (IV) происходит в транс-положение. Так, в случае присоединения Вг 2 к циклопентену образуется только транс-1,2-дибромдикло-пентан:

Доказательством двухстадийного присоединения галогена к алкенам является тот факт, что при присоединении Вг 2 к циклогексену в присутствии МаС1 образуется не только транс-1,2-дибромциклогексан, но и транс-1-бром-2-хлорциклогексан:

Радикальное галогенирование

В жестких условиях (газовая фаза, 500°С) галогены не присоединяются по двойной связи, а происхо­дит галогенирование α-положения:

В этом случае реакция идет по радикальному механизму.

Присоединение галогеноводородов

Галогеноводороды присоединяются к алкенам с образованием галогеналкилов. Присоединение в случае несимметричных молекул идет по правилу Марковникова, т. е. водород присоединяется к наи­более гидрогенизированному атому углерода (с наибольшим числом водородных атомов):

Эта реакция, как и присоединение брома к этилену, идет после образования π-комплекса через стадию образования протониевого иона:

В присутствии перекисей бромоводород присоединяется не по правилу Марковникова (эффект Хараша):

В присутствии перекисей реакция идет не по механизму электрофильного присоединения, как выше, а по радикально­му механизму. Первой стадией является атака перекисного радикала на молекулу НВг:

Возникший радикал брома присоединяется к пропилену с образованием нового радикала:

Последний стабилизируется за счет вырывания водорода из новой молекулы НВг с регенерацией нового радикала брома и т. д.:

И в этом случае направление процесса определяется устойчи­востью радикалов бромпропана: образуется преимущественно более устойчивый, приводя к 1-бромпропану.

Присоединение воды и серной кислоты

В присутст­вии кислот вода присоединяется по двойной связи по правилу Марковникова:

Так же идет реакция и с серной кислотой:

Окисление перманганатом калия в нейтральной или слабощелочной среде (реакция Вагнера)

На первой стадии по механизму цис-присоединения идет присоедине­ние иона МпО 4 к кратной связи с последующим гидролитическим расщепле­нием неустойчивого продукта присоединения и выделения иона МпО 3 -

Реакция идет по схеме цис-присоединения:

Кислые растворы перманганата окисляют алкены с разры­вом цепи по С=С-связи и образованием кислот или кетонов:

Действие озона на алкены

Эта реакция приводит к кристаллическим сильновзрывчатым озонидам, которые при гидролизе образуют альдегиды или кетоны:

Реакция часто применяется для определения положения двойной связи в молекуле, так как по образующимся карбо­нильным соединениям можно представить себе и строение ис­ходного алкена.

Реакция идет путем цис-циклоприсоединения через стадию неустой­чивого мольозонида, который подвергается диссоциации и последующей рекомбинации:

Полимеризация алкенов

Особо важное значение полу­чила полимеризация этилена и пропилена в полимеры с молеку­лярной массой около 10 5 . До 1953 г. в основном применялась радикальная (инициируемая свободными радикалами) полиме­ризация, хотя в принципе использовалось и анионное, и катионное инициирование процесса.

После работ Циглера и Натта, которые получили Нобелев­скую премию за эти исследования, наиболее широко стала ис­пользоваться так называемая координационная полимериза­ция. Простейший «циглеровский» катализатор этого типа со­стоит из триэтилалюминия и соединений титана (IV). При этом происходит образование полимеров с высокой степенью стереорегулярности. Например, при полимеризации пропиле­на образуется изотактический полипропилен - полимер, в ко­тором все боковые СН 3 -группы занимают одинаковое про­странственное положение:

Это придает полимеру большую прочность, и он может даже применяться для изготовления синтетического волокна.

Полиэтилен, получаемый этим способом, представляет со­бой предельный углеводород с неразветвленной цепью. Он ме­нее эластичен, чем полиэтилен, получаемый при высоких дав­лениях, но обладает большей твердостью и способен выдержи­вать воздействие более высоких температур.

Благодаря сочетанию многих ценных свойств полиэтилен имеет очень широкое применение. Он является одним из лучших материалов для изоляции кабелей, для применения в радарной технике, радиотехнике, сельском хозяйстве и др. Из него изготавливают трубы, шланги, сосуды, тару для сель­скохозяйственных продуктов и удобрений, пленки различной толщины и многие бытовые предметы. Прочные пленки из полиэтилена начали применяться даже в качестве покрытия дна искусственных каналов для придания им водонепроницае­мости.

Теломеризация

Интересен имеющий промышленное примене­ние процесс сополимеризации этилена с тетрахлоридом углерода, назван­ный теломеризацией. Если в смесь этилена с СС1 4 внести перекись бензоила или другой инициатор, распадающийся с образованием свободных радикалов, происходит следующий процесс:

Радикалы СС1 3 " инициируют цепную полимеризацию этилена:

При встрече с другой молекулой СС1 4 рост цепи прекращается:

Радикал СС1 3 - дает начало новой цепи.

Образующиеся низкомолекулярные продукты полимеризации, со­держащие на концах цепи атомы галогена, называются теломерами. По­лучены теломеры со значениями п =2,3, 4, ...,15.

При гидролизе продуктов теломеризации образуются ω-хлорзаме-щенные карбоновые кислоты, являющиеся ценными химическими про­дуктами.

ОПРЕДЕЛЕНИЕ

Алкенами называются ненасыщенные углеводороды, молекулы которых содержат одну двойную связь. Строение молекулы алкенов на примере этилена приведено на рис. 1.

Рис. 1. Строение молекулы этилена.

По физическим свойствам алкены мало отличаются от алканов с тем же числом атомов углерода в молекуле. Низшие гомологи С 2 - С 4 при нормальных условиях - газы; С 5 - С 17 - жидкости; высшие гомологи - твердые вещества. Алкены нерастворимы в воде. Хорошо растворимы в органических растворителях.

Получение алкенов

В промышленности алкены получают при переработке нефти: крекингом и дегидрированием алканов. Лабораторные способы получения алкенов мы разделили на две группы:

  • Реакции элиминирования (отщепления)

— дегидратация спиртов

CH 3 -CH 2 -OH → CH 2 =CH 2 + H 2 O (H 2 SO 4 (conc) , t 0 = 170).

— дегидрогалогенированиемоногалогеналканов

CH 3 -CH(Br)-CH 2 -CH 3 + NaOH alcohol → CH 3 -CH=CH-CH 3 + NaBr + H 2 O (t 0).

— дегалогенированиедигалогеналканов

CH 3 -CH(Cl)-CH(Cl)-CH 2 -CH 3 + Zn(Mg) → CH 3 -CH=CH-CH 2 -CH 3 + ZnCl 2 (MgCl 2).

  • Неполное гидрирование алкинов

CH≡CH + H 2 →CH 2 =CH 2 (Pd, t 0).

Химические свойства алкенов

Алкены - весьма реакционноспособоные органические соединения. Это объясняется их строением. Химия алкенов - это химия двойной связи. Типичные реакции для алкенов - реакции электрофильного присоединения.

Химические превращения алкенов протекают с расщеплением:

1) π-связи С-С (присоединение, полимеризация и окисление)

— гидрирование

CH 3 -CH=CH 2 + H 2 → CH 3 -CH 2 -CH 2 (kat = Pt).

— галогенирование

CH 3 -CH 2 -CH=CH 2 + Br 2 → CH 3 -CH 2 -CH(Br)-CH 2 Br.

— гидрогалогенирование (протекает по правилу Марковникова: атом водорода присоединяется преимущественно к более гидрированному атому углерода)

CH 3 -CH=CH 2 + H-Cl → CH 3 -CH(Cl)-CH 3 .

— гидратация

CH 2 =CH 2 + H-OH → CH 3 -CH 2 -OH (H + , t 0).

— полимеризация

nCH 2 =CH 2 → -[-CH 2 -CH 2 -]- n (kat, t 0).

— окисление

CH 2 =CH 2 + 2KMnO 4 + 2KOH → HO-CH 2 -CH 2 -OH + 2K 2 MnO 4 ;

2CH 2 =CH 2 + O 2 → 2C 2 OH 4 (эпоксид) (kat = Ag,t 0);

2CH 2 =CH 2 + O 2 → 2CH 3 -C(O)H (kat = PdCl 2 , CuCl).

2) σ- и π-связей С-С

CH 3 -CH=CH-CH 2 -CH 3 + 4[O] → CH 3 COOH + CH 3 CH 2 COOH (KMnO 4 , H +, t 0).

3) связей С sp 3 -Н (в аллильном положении)

CH 2 =CH 2 + Cl 2 → CH 2 =CH-Cl + HCl (t 0 =400).

4) Разрыв всех связей

C 2 H 4 + 2O 2 → 2CO 2 + 2H 2 O;

C n H 2n + 3n/2 O 2 → nCO 2 + nH 2 O.

Применение алкенов

Алкены нашли применение в различных отраслях народного хозяйства. Рассмотрим на примере отдельных представителей.

Этилен широко используется в промышленном органическом синтезе для получения разнообразных органических соединений, таких как галогенопроизводные, спирты (этанол, этиленгликоль), уксусный альдегид, уксусная кислота и др. В большом количестве этилен расходуется для производства полимеров.

Пропилен используется как сырье для получения некоторых спиртов (например, пропанола-2, глицерина), ацетона и др. Полимеризацией пропилена получают полипропилен.

Примеры решения задач

ПРИМЕР 1

Задание При гидролизе водным раствором гидроксида натрия NaOH дихлорида, полученного присоединением 6,72 л хлора к этиленовому углеводороду, образовалось 22,8 г двухатомного спирта. Какова формула алкена, если известно, что реакции протекают с количественными выходами (без потерь)?
Решение Запишем уравнение хлорирования алкена в общем виде, а также реакцию получения двухатомного спирта:

C n H 2 n + Cl 2 = C n H 2 n Cl 2 (1);

C n H 2 n Cl 2 + 2NaOH = C n H 2 n (OH) 2 + 2HCl (2).

Рассчитаем количество вещества хлора:

n(Cl 2) = V(Cl 2) / V m ;

n(Cl 2) = 6,72 / 22,4 = 0,3 моль,

следовательно, дихлорида этилена тоже будет 0,3 моль (уравнение 1), двухатомного спирта также должно получиться 0,3 моль, а по условию задачи это 22,8 г. Значит молярная масса его будет равна:

M(C n H 2 n (OH) 2) = m(C n H 2 n (OH) 2) / n(C n H 2 n (OH) 2);

M(C n H 2 n (OH) 2) = 22,8 / 0,3 = 76 г/моль.

Найдем молярную массу алкена:

M(C n H 2 n) = 76 - (2×17) = 42 г/моль,

что соответствует формуле C 3 H 6 .

Ответ Формула алкенаC 3 H 6

ПРИМЕР 2

Задание Сколько граммов потребуется для бромирования 16,8 г алкена, если известно, что при каталитическом гидрировании такого же количества алкена присоединилось 6,72 л водорода? Каков состав и возможное строение исходного углеводорода?
Решение Запишем в общем виде уравнения бромирования и гидрирования алкена:

C n H 2 n + Br 2 = C n H 2 n Br 2 (1);

C n H 2 n + H 2 = C n H 2 n +2 (2).

Рассчитаем количество вещества водорода:

n(H 2) = V(H 2) / V m ;

n(H 2) = 6,72 / 22,4 = 0,3 моль,

следовательно, алкена тоже будет 0,3 моль (уравнение 2), а по условию задачи это 16,8 г. Значит молярная масса его будет равна:

M(C n H 2n) = m(C n H 2n) / n(C n H 2n);

M(C n H 2 n) = 16,8 / 0,3 = 56 г/моль,

что соответствует формуле C 4 H 8 .

Согласно уравнению (1) n(C n H 2 n) :n(Br 2) = 1:1, т.е.

n(Br 2) = n(C n H 2 n) = 0,3 моль.

Найдем массу брома:

m(Br 2) = n(Br 2) × M(Br 2);

M(Br 2) = 2×Ar(Br) = 2×80 = 160 г/моль;

m(MnO 2) = 0,3 × 160 = 48 г.

Составим структурные формулы изомеров: бутен-1 (1), бутен-2 (2), 2-метилпропен (3), циклобутан (4).

CH 2 =CH-CH 2 -CH 3 (1);

CH 3 -CH=CH-CH 3 (2);

CH 2 =C(CH 3)-CH 3 (3);

Ответ Масса брома равна 48 г