Для водопровода        01.04.2019   

Для чего делают температурные швы в бетонных конструкциях. Деформационный шов в бетоне: необходимость применения и особенности реализации

Во избежание появления в стенах зданий трещин от неравномерной осадки фундаментов или вследствие деформации материала стены при колебаниях температуры устраивают деформационные швы. Они могут быть осадочными, температурными, антисейсмическими и усадочные.

1) Осадочные швы устраивают в случае различной этажности частей здания или если залегающие в основании грунты имеют различные физико-механические свойства. В этом случае шов разрезает здание полностью на отсеки, которые могут самостоятельно работать под нагрузкой, т.е. шов разрезает и стены и фундаменты. Ширина швов 10...20 мм. Осадочные швы в стенах делают в виде шпунта толщиной, как правило 1/2 кирпича, с прокладкой двух слоев толя, а в фундаментах - без шпунта. Над верхним обрезом фундамента под шпунтом стены оставляют зазор на 1...2 кирпича кладки, чтобы при осадке шпунт не упирался в фундамент. Иначе в этом месте кладка может разрушиться. Осадочные швы в фундаментах и стенах законопачивают просмоленной паклей.

Чтобы поверхностные и грунтовые воды не проникали в подвал через осадочные швы, с наружной стороны фундамента устраивают глиняный замок или применяют другие меры, предусмотренные проектом.

Температурные швы делят надземную конструкцию строения по вертикали на отдельные части, что обеспечивает независимое горизонтальное перемещение отдельных частей здания. Швы могут иметь размеры от 50 до 200 м в зависимости от материала стены и района строительства. Отсеки стен в деформационном шве сопрягаются обычно в виде паза (штробы) и гребня с прокладкой между ними двух слоев толя и утеплением шва просмоленной паклей или гернитовым шнуром. Нередко используют устройство специальных компенсаторов из гибких металлических пластинок, между которыми помещают утеплитель. Расстояние между температурными швами указывают в проекте. Оно зависит от материала, из которого выполнена кладка стен, марки раствора и средней температуры наружного воздуха. В местах прохождения деформационного шва в торце примыкаемой стены оставляют паз (вертикальную штрабу) шириной в 1/2...1 кирпич. По вертикальной поверхности штрабы расстилают два слоя толя или пергамина и слой просмоленной пакли, выкладывают торец смежной стены в форме зуба, входящего в штрабу.

Антисейсмические швы применяются в зданиях, строящихся в районах, подверженных землетрясениям. Они разрезают здание на отсеки, которые в конструктивном отношении должны представлять собой самостоятельные устойчивые объёмы. По линиям антисейсмических швов располагают двойные стены или двойные ряды несущих стоек, входящих в систему несущего остова соответствующего отсека.

Схема расположения сейсмических поясов в зданиях с каменными стенами и конструкция антисейсмических поясов наружной стены:

А - фасад; Б - разрез по стене; В - план наружной стены; Г,Д - внутренняя часть; Е - деталь плана антисейсмического пояса наружной стены;

1 - антисейсмический пояс; 2 - железобетонный сердечник в простенке; 3 - стена; 4 - панели перекрытия; 5 - арматурный каркас в швах между панелями перекрытий;

Усадочные швы делают в стенах, возводимых из монолитного бетона различных видов. Монолитные стены при твердении бетона уменьшаются в объёме. Усадочные швы препятствуют возникновению трещин, снижающих несущую способность стен. В процессе твердения монолитных стен ширина усадочных швов увеличивается; по окончании усадки стен швы наглухо заделывают.

Для организации и гидроизоляции деформационных швов используют различные материалы:
- герметики
- замазки
- гидрошпонки

Инъекционные составы;

Эластичные ленты и др.

В кирпичных стенах деформационные швы устраивают в четверть или в шпунт. В мелкоблоковых стенах примыкание смежных участков осуществляется впритык и дополнительно защищается от продувания стальными компенсаторами.

Деформационные швы в кирпичных стенах:

А - в кирпичной стене, примыкание в шпунт; Б - в кирпичной стене, примыкание в четверть; В - с компенсатором из кровельной стали в мелкоблочной стене;

ВОПРОС 10. Железобетонные перекрытия гражданских и промышленных зданий.

Перекрытие - горизонтальная конструкция, которая разделяет по высоте смежные помещения в здании или сооружении.

По способу устройства они бывают: монолитными, сборными и сборно-монолитными. Сборные железобетонные перекрытия -устраивают из готовых элементов заводского изготовления. Они наиболее индустриальны и имеют широкое применение как в промышленном, так и в гражданском строительстве. Их подразделяют на балочные и безбалочные.

Монолитные перекрытия устраиваются на месте.Бывают: 1)Балочное монолитное; 2)Безбалочное; 3)с несъемной опалубкой; 4)с применением настила (стального профилированного).

Сборно-монолитные перекрытия- одни конструктивные элементы (плиты) являются сборными, а другие (балки) - монолитными.В соответствии с назначением перекрытий к ним предъявляют кроме экономичности и индустриальности требования прочности и жесткости, тепло- и звукоизоляции, огнестойкости и специальные (газо- и водонепроницаемость, сопротивляемость загниванию).

Простейшим видом монолитного ж.б. перекрытия является гладкая однопролетная плита. Такое перекрытие, имеющее толщину 60..100 мм. в зависимости от нагрузки и величины пролета, применяют для помещений с размерами сторон до 3 м.

При больших пролетах устраивают балочные перекрытия, которые могут быть сборными и монолитными. Так, если необходимо перекрыть помещение, имеющее размеры 8 х 18 м.

Устраивают балки пролетом 8м. с шагом 6м. Эти балки называют главными . По ним через 1.5 ..2 м. устраивают так называемые второстепенные балки,имеющие пролет 6м. По верху укладывают плиту толщиной 60..100 мм. Таким образом, конструкция перекрытия получается ребристая. Высота главной балки ориентировочно может быть принята 1/12.. 1/16 пролета, а ширина 1/8.. 1/12 от расстояния между осями. В ребристых перекрытиях 50..70 % бетона расходуется на плиту. Если данный вид перекрытия выполнен монолитным, то необходимо в сжатые сроки осуществить устройство опалубки, проведение арматурных работ и укладку бетона. Это один из недостатков данного вида перекрытия. Один из видов ребристого перекрытия является -Кессонное перекрытие представляющее собой ребристую конструкцию с взаимно перпендикулярно расположенными ребрами в нижней зоне.

Применение их связано в основном с требованиями решения интерьера. Сборные ж.б. ребристые перекрытия гораздо экономичнее монолитных, т.к. позволяют повысить индустриальность строительства, сократить трудозатраты и сроки произ-ва строит.-монтажных работ. Лучшим вариантом служит тот, где применяются плиты размером на 1 комнату.

Перекрытие деревянным по балкам . Балки располагаются, в одном направлении с шагом 600…1000 мм. и заполненяются между ними из гипсо- или легкобетонными плитами, армированных деревянными брусковыми каркасами (для междуэтажных перекрытий) или сварными стальными сетками (для чердачных перекрытий). Величина опирания на стены должна составлять 200..250 мм. Под балки укладывают бетонные подушки или стальные подкладки. Балки необходимо защитить спец. покрытием от коррозии.

Перекрытия по деревянным балкам - применяют в основном в каменных малоэтажных и деревянных зданиях, где лес является местным строительным материалом. Эти перекрытия сгораемы, подвержены загниванию и малоиндустриальны. Деревянные балки делают сплошными или составными. Рациональны и экономичны по расходу древесины клеефанерные балки из водостойкой фанеры с дощатыми поясами. При устройстве перекрытий пространство между деревянными балками заполняют накатом, опирающимся на черепные бруски. Накат может быть сделан из древесных материалов -одно- или двуслойных щитов, а также плит или блоков из легких минеральных материалов - гипсобетона, легкого бетона, керамики. Для обеспечения необходимых звуко- и теплоизоляционных качеств, а также водо- и пароизоляционных свойств перекрытие по накату смазывают глиной или покрывают рулонным материалом, поверх которых делают засыпку шлаком или другими сыпучими легкими материалами, обладающими низкой теплопроводностью.

Перекрытия по металлическим (стальным) балкам- обычно устраивают в многоэтажных промышленных зданиях со стальным каркасом по индивидуальным проектам в ограниченном объеме. Стальные балки перекрытий изготовляют из прокатных профилей, чаще двутавров. Заполнение в перекрытиях выполняют из сборных железобетонных плит, укладываемых на нижние полки балок.

Во многих промышленных сферах широко применяются деформационные швы. Речь идет о высотном строительстве, сооружении мостовых конструкций и других отраслях. Они представляют собой весьма важный объектный элемент, при этом выбрать необходимый тип дилатационной конструкции, будет колеблется в зависимости от:

  • величины статических и термогидрометрических изменений;
  • величины определенной нагружаемости транспорта и необходимого уровня комфорта проезда во время эксплуатации;
  • от условий содержания.

Предназначение деформационного шва заключается в снижении нагрузки на отдельные части конструкций в местах предполагаемых деформаций, которые могут образоваться при колебании воздушной температуры, а также сейсмических явлениях, непредвиденной и неравномерной осадочности грунта и прочих воздействиях, могущих вызвать собственные нагрузки, которые снижают несущие свойства конструкций. В визуальном плане это разрез в теле здания, он делит постройку на несколько блоков, придавая этим некую упругость сооружению. Для обеспечения гидроизоляции разрез заполняют подходящим материалом. Это могут быть различные герметики, гидрошпонки или замазки.

Вам могут быть интересны эти товары

Установка деформационного шва - прерогатива опытных строителей, поэтому такое ответственное дело стоит доверить исключительно квалифицированным специалистам. Строительная бригада должна обладать порядочным оборудованием для грамотного монтирования деформационного шва - от этого зависит долговечность эксплуатации всей конструкции. Необходимо предусмотреть все виды работ, включая монтерские, сварочные, плотнические, арматурные, геодезические, укладку бетона. Технология установки деформационного шва обязана отвечать принятым специально разработанным рекомендациям.

Содержание деформационных швов в целом не представляет каких-либо трудностей, однако предусматривает периодические осмотры. Особый контроль необходимо осуществлять весной, когда в дилатационное пространство могут попадать куски льда, металла, древесины, камня и прочий мусор - это может послужить препятствием для нормального функционирования шва. В зимний период следует проявлять осторожность в применении снегоуборочной техники, поскольку ее действия могут повредить деформационный шов. При обнаружении неисправности немедленно обращайтесь к производителю.

Поскольку гидротехнические сооружения из железобетона или бетона (например, плотины, судоходные постройки, гидроэлектростанции, мосты) имеют значительные размеры, они претерпевают силовые воздействия различного происхождения. Они зависят от многих факторов, таких как вид основания, условия производственных работ и прочих. В конечном итоге могут возникнуть температурные усадочные и осадочные деформации, рискующие привести к появлению трещин разной величины в теле сооружения.

Чтобы в максимальной степени обеспечить сохранность монолитности сооружения, применяются следующие мероприятия:

  • рациональная разрезка построек временными и постоянными швами в зависимости от условий как геологических, так и климатических
  • создание и поддержание нормального температурного режима в период возведения зданий, а также при дальнейшей эксплуатации. Задача решается путем использования малоусадочных и низкотермичных марок цемента, его рационального использования, охлаждения труб, теплоизоляции бетонных поверхностей
  • повышение уровня однородности бетона, достижение его адекватной растяжимости, прочности на армирование в местах возможного возникновения трещин и осевое растяжение

В какой момент происходят основные деформации бетонных построек? Для чего необходимы деформационные швы в таком случае? Изменения в теле здания могут произойти в период возведения при большом температурном напряжении - следствии экзотермии затвердевающего бетона и колебания температуры воздуха. К тому же в этот момент происходит усадка бетона. В строительный период деформационные швы способны снизить чрезмерные нагрузки и предотвратить дальнейшие изменения, могущие стать фатальными для сооружения. Постройки как бы разрезаются по длине на отдельные секционные блоки. Деформационные швы служат для обеспечения качественного функционирования каждой секции, а также исключают вероятность возникновения усилий между соседствующими блоками.

В зависимости от срока эксплуатации деформационные швы подразделяются на конструктивные, постоянные или временные (строительные). К постоянным швам относят температурные разрезы в сооружениях, имеющих скальное основание. Временные усадочные швы создаются с целью понижения температурных и других напряжений, благодаря ним сооружение разрезается на отдельные столбики и блоки бетонирования.

Существует целый ряд разновидностей деформационных швов. Традиционно их классифицируют согласно природе и характеру факторов, вызывающих деформацию в сооружениях. Вот они:

  • Температурные
  • Осадочные
  • Антисейсмические
  • Усадочные
  • Конструкционные
  • Изоляционные

Наиболее распространенными видами считаются температурные и осадочные деформационные швы. Их применяют при подавляющем большинстве возведений различных сооружений. Температурные деформационные швы компенсируют изменения в теле зданий, возникающие при перепадах температуры окружающей среды. В большей степени этому подвержена наземная часть постройки, поэтому разрезы делают от уровня грунта до кровли, тем самым не затрагивая фундаментальную часть. Данный тип швов разрезает здание на блоки, таким образом, обеспечивая вероятность линейных перемещений без негативных (разрушительных) последствий.

Осадочные деформационные швы компенсируют изменения вследствие неравномерных различного рода нагрузок конструкции на грунт. Это происходит из-за различий в количестве этажей или большой разницы в массе наземных сооружений.

Антисейсмический тип деформационных швов предусмотрен при возведении построек в сейсмозонах. Устройство таких разрезов позволяет разделить здание на отдельные блоки, представляющие собой самостоятельные объекты. Такая мера предосторожности позволяет эффективно противодействовать сейсмическим нагрузкам.

В монолитном строительстве широко применяются усадочные швы. По мере затвердевания бетона наблюдается уменьшение монолитных конструкций, а именно в объеме, но при этом в структуре бетона образуется избыточная внутренняя напряженность. Данный тип деформационного шва позволяет предотвратить появление трещин в стенах сооружения в результате воздействия такого напряжения. При завершении процесса усадки стен, деформационный шов наглухо заделывают.

Изоляционные швы устраивают вдоль колон, стен, вокруг фундамента под оборудование для того, чтобы защитить стяжку пола от возможной передачи деформации, следующей от конструкции здания.

Конструкционные швы действуют по типу усадочных, они предусматривают небольших размеров горизонтальные подвижки, но ни в коем случае не вертикальные. Также хорошо было бы, чтоб конструкционный шов соответствовал усадочному.

Следует отметить, что конструкция деформационного шва должно отвечать плану разработанного проекта - речь идет о строгом соответствии всем заданным параметрам.

Проектировщики мостовых сооружений, прежде всего, выступают за отличную универсальность деформационных швов и их конструкцию, что позволило бы применить ту или иную систему швов практически без изменений на любом типе мостовых конструкций (габаритности, схем, мостового полотна, материалов изготовления пролетных строений и пр.).

Если говорить о деформационных швах, устанавливаемых в автодорожных мостах, то следует учитывать следующие критерии:

  • Водонепроницаемость
  • Долговечность и надежность эксплуатации
  • Величина эксплуатационных затрат (она должна быть минимальной)
  • Небольшие величины значения реактивных усилий, которые передаются на несущие конструкции
  • Возможность равномерного распределения зазоров в промежутках шовных элементов при широких температурных диапазонах
  • Перемещение мостовых пролетных строений во всевозможных плоскостях и направлениях
  • Шумовая эмиссия в разных направлениях при движении автотранспорта
  • Простота и удобство монтирования

В пролетных сооружениях малых и средних мостовых конструкций применяют устройство деформационных швов заполненного и закрытого типов при передвижениях концов пролетных сооружений соответственно до 10-10-20 мм.

По видовому признаку очевидна следующая классификация деформационных швов мостов:

Открытый тип. Данный тип шва предполагает незаполняемый промежуток между составными конструкциями.

Закрытый тип. В данном случае расстояние между сопрягаемыми конструкциями закрыт проезжей частью - покрытием, уложенным без необходимого разрыва.

Заполненный тип. В закрытых швах покрытие уложено, напротив, с разрывом, из-за этого с проезжей части отчетливо видны и кромки зазора, а также само заполнение.

Перекрытый тип. В случае с перекрытым деформационным швом зазор между связующими конструкциями перекрыт каким-либо элементом на верхнем уровне проезжей части.

Кроме видового признака деформационные швы мостовых конструкций разделяют на группы согласно их расположению в проезжей части:

  • под трамвайным полотном
  • в бордюре
  • в пределах между тротуарами
  • в тротуарах

Это стандартная классификация мостовых деформационных швов. Существуют и побочные, более подробные деления швов, однако все они обязаны быть подчинены основному группированию.

Судя по опыту эксплуатации мостов в Западной Европе, очевидно, что долговечность службы мостовой конструкции (любой) практически на сто процентов зависит от прочности и качественности деформационных швов.

Какими бывают деформационные швы между зданиями? Специалисты классифицируют их по ряду признаков. Это может быть тип обслуживаемой конструкции, место расположения (устройства), например, деформационные швы в стенах постройки, в полах, в кровле. Кроме того стоит учитывать открытость и закрытость их расположения (внутри помещения и снаружи, на открытом воздухе). Об общепринятой классификации (наиболее важной, охватывающей все наиболее характерные признаки деформационных швов) сказано уже немало. Она принята на основании деформаций, с которыми призвана бороться. С этой точки зрения деформационный шов между зданиями может быть температурный, осадочный, усадочный, сейсмический, изоляционный. В зависимости от текущих обстоятельств и условий между зданиями применяют различные виды деформационных швов. Однако следует знать, что все они должны соответствовать заданным изначально параметрам.

Еще на стадии проектирования здания специалистами определяются расположение, а также размер деформационных швов. Это происходит с учетом всех предполагаемых нагрузок, вызывающих деформацию сооружения.

При устройстве деформационного шва необходимо понимать, что он представляет собой не просто разрез полу, стене или кровле. При всем этом он обязан быть правильно оформлен с конструктивной точки зрения. Это требование обусловлено тем, что в процессе эксплуатирования сооружений деформационные швы берут на себя колоссальные нагрузки. Если возникает превышение несущей способности шва, есть риск появления трещин. Это, кстати, довольно известное явление, а предотвратить его могут специальные профили, изготовленные из металла. Их предназначением являются деформационные швы - профили герметизируют их, обеспечивают конструктивное усиление.

Шов между зданиями, служит своего рода соединением двух сооружений, стоящих близко друг к другу, но имеющих при этом разные фундаменты. Вследствие этого негативным образом может сказаться разница в весовой нагрузке конструкций, и оба сооружения могут дать нежелательные трещины. Чтобы этого избежать, применяют жесткое соединение с применением армирования. В данном случае необходимо убедиться в том, что оба фундамента уже как следует, осели и являются достаточно устойчивыми к предстоящим нагрузкам. Устройство деформационного шва осуществляется в строгом соответствии с общепринятым регламентом действий.

Деформационный шов между стенами

Как известно, стены представляют собой важнейший элемент в структуре сооружения. Они выполняют несущую функцию, принимая на себя все выпадающие нагрузки. Это вес кровли, плиты перекрытий, а также другие элементы. Из этого следует, что надежность и долговечность здания во многом зависит от прочности деформационного шва между стенами. Более того комфортная эксплуатация внутренних помещений также зависит от стен (несущих конструкций), выполняющих важную функцию ограждения от внешнего мира.

Следует знать, что чем толще материал стен, тем выше требования ставится к деформационным швам, устроенным в них. Несмотря на то, что внешне стены представляются монолитными, на самом деле им приходится претерпевать различного рода нагрузки. Причинами деформации могут выступать:

  • перепады температуры воздуха
  • грунт под сооружением может неравномерно оседать
  • вибрационные и сейсмические нагрузки и многое другое

Если трещины образуются в несущих стенах, то это может угрожать целостности всего здания в целом. Исходя из вышесказанного, деформационные швы являются единственным способом предотвращения изменений в теле сооружений, могущих стать фатальными.

Чтобы функционирование деформационного шва в стенах было правильным, необходимо, прежде всего, грамотное выполнение проектных работ. Таким образом, расчет действий обязан производиться еще на стадии проектировки здания.

Основным критерием успешной эксплуатации деформационного шва можно назвать правильно подсчитанное количество отсеков, на которые планируется разрезать постройку для успешной компенсации напряжений. Согласно с установленным количеством определяется и расстояние, которое необходимо учесть между швами.

Как правило, в стенах с несущей функцией, деформационные швы имеют интервал приблизительно 20 метров. Если речь идет о перегородках, то допускается дистанция в 30 метров. При этом строители обязаны учитывать области концентрации внутренних напряжений. Расстояние определяется типом предполагаемых деформационных швов, которые в свою очередь зависят от факторов, вызывающих изменения в теле сооружения.

Кроме того в начальном моменте проектирования в стенах сооружений с особой тщательностью учитывается ширина разреза для деформационных швов. Данный параметр имеет важное функциональное значение, так как определяет величину предполагаемого поперечного отстранения конструктивных элементов здания. О способах герметизации деформационных швов также следует подумать заранее.

Деформационные швы в промышленных зданиях

Протяженность промышленных сооружений, как правило, почти всегда больше, чем построек гражданского назначения, поэтому устройство в таких швах приобретает большое значение. В промышленных зданиях специалисты предусматривают деформационные швы согласно их назначению. Они могут быть антисейсмическими, осадочными и даже температурными.

Деформационные швы в каркасных зданиях разрезают постройку на отдельные блоки, а также все опирающиеся на нее конструкции. В промышленных постройках массового строительства, как правило, устраивают температурные швы, в свою очередь разделяемые на продольные и поперечные. Расстояние между швами в промзданиях назначают согласно конструктивному решению постройки, а также климатических условий строительства, величины температуры воздуха внутри помещения. Если речь идет о железобетонных одноэтажных конструкциях промышленных постройках, то промежуток между швами разрешается без расчета подъема в 20%.

Поперечные деформационные швы на одноэтажных промышленных зданиях делают на парных колоннах без учета вставки. В многоэтажных постройках - со вставкой или без нее и также на парных колоннах. Стоит отметить, что более технологичными являются швы без вставки, поскольку они не нуждаются в доборных ограждающих элементах. На сегодняшний день деформационные швы делаются в формате упругой арки из минераловатных плит средней жесткости. Они обжимаются оцинкованной кровельной сталью - цилиндрическими фартуками. В месте устройства деформационного шва ковер усиливается несколькими слоями стеклоткани.

Температурные продольные швы в постройках в один этаж устраивают на 2х рядах колонн с наличием вставки, ее ширину в зависимости от привязки в смежных пролетах считают от 500 до 1000 мм. Если продольные температурный шов совмещается с различными показателями высот смежных пролетов, поэтому принимают другие размеры вставок. Такие же условия соблюдаются в местах, где перпендикулярные пролеты взаимно примыкают один к другому.

Если речь ведется о промышленных зданиях с сооруженным железобетонным скелетом без специальных мостовых кранов можно устраивать деформационные продольные швы на таких колоннах как одинарные. Такой шов отличается простотой монтажа, тем самым позволяет не брать во внимание доборные элементы в стенах и покрытиях, а также парные колонны или подстропильные конструкции. То же самое можно сказать о промышленных зданиях без кранов со смешанным или металлическим каркасом.

Проблема:

Очень часто у Заказчиков встает вопрос инициализации типа шва в строительной конструкции, через который поступает вода. Действительно, данный вопрос очень серьезный и требует определенных строительных знаний.

Предлагаю более подробно рассмотреть деформационные осадочные и температурные ("холодные") швы и разобраться в чем разница между ними.

Что такое деформационный шов?

Деформационный шов - предназначен для уменьшения нагрузок на элементы конструкций в местах возможных деформаций, возникающих при колебании температуры воздуха, сейсмических явлений, неравномерной осадки грунта и других воздействий, способных вызвать опасные собственные нагрузки, которые снижают несущую способность конструкций. Представляет собой своего рода разрез в конструкции здания, разделяющий сооружение на отдельные блоки и, тем самым, придающий сооружению некоторую степень упругости. С целью герметизации заполняется упругим изоляционным материалом.

В зависимости от назначения применяют следующие деформационные швы: температурные, осадочные, антисейсмические и усадочные.

Что такое температурный «холодный» шов?

«Холодный» шов бетонирования – это наиболее слабое место бетонной конструкции, которое образуется в результате технологических особенностей производства монолитных работ. То есть, при строительстве здания сначала заливают монолитную фундаментную плиту, а затем на нее опирают стены. Таким же образом на готовые стены опирают монолитное перекрытие. Мы рассматриваем швы с точки зрения вероятных протечек и здесь необходимо упомянуть о том, что есть множество технологий по гидроизоляции таких швов.


Чем опасны протечки швов?

Протечки деформационных швов не опасны – в таких швах нет важных конструктивных элементов, а вот протечки «холодных» швов вызывают беспокойство, так как в них располагается несущая арматура, которая подвергается коррозии. Уменьшение диаметра арматуры на десятые доли миллиметра очень серьезно отражается на несущей способности. Следовательно, «холодные» швы бетонирования требуют ремонта и усиления посредством инъекционных работ.

Как устранить протечки?

Практика показывает, что на этапе строительства работы по уплотнению швов или не выполняются (не считая заложенного пенопласта) или выполняются крайне некачественно! Уже на этапе подготовки объекта к сдаче проявляются повсеместные протечки швов, что не позволит сдать объект строительства Гос. комиссии!

В таких ситуациях самый ЭФФЕКТИВНЫЙ, БЫСТРЫЙ и ДЕШЕВЫЙ метод – ИНЪЕКЦИОННАЯ ГИДРОИЗОЛЯЦИЯ от СК ООО «Вертикаль Групп» (www.injekt.pro)!

Можно ли выполнить инъекционную гидроизоляцию самостоятельно?

Можно, но при одном условии, что у вас уже есть большой опыт работы с полимерными составами. Также необходимо учитывать очень сложный и, зачастую, очень длительный этап подготовительных работ, где приходится применять самые нестандартные технические решения, которые. Еще одна особенность – умение работать с вакуумным насосом, так как вещь крайне дорогая и требующая периодического сложного технического обслуживания, вплоть до полной его разборки и сборки.

Исходя из всего выше сказанного, остается сделать вывод о том, что для Закачикам наиболее удобно и максимально дешево обратиться в специализированную компанию по инъекционной гидроизоляции, такую как «Вертикаль Групп» .

! Наиболее эффективным решением проблемы протечки деформационных швов является инъекционная гидроизоляция!

Основным преимуществом инъекционнай гидроизоляции является гарантированно положительный результат , который можно наблюдать уже в первые минуты после завершения работ по инъекционнай гидроизоляции.

ОСНОВНЫЕ ПРЕИМУЩЕСТВА ИНЪЕКЦИОННОЙ ГИДРОИЗОЛЯЦИИ ШВОВ:

Высокая скорость выполнения работ - бригада из 4-х специалистов в смену может выполнить гидроизоляцию до 10 м.п. деформационного шва

Нет необходимости проведения подготовительных работ, которые требуют согласования с госорганами или собственниками соседних зданий - все работы выполняются со стороны помещения (из подвала)

Низкая стоимость комплекса работ, так как нет дорогостоящего этапа подготовки

Отсутствует сезонный фактор, так как работы можно выполнять методом локального прогрева конструкции

Этапы работ:

1. Основные этапы работ - ГЕРМЕТИЗАЦИЯ ДЕФОРМАЦИОННОГО ШВА

1) Визуальный осмотр, локальное вскрытие шва, проверка и уточнение принятых технических решений

2) Расчистка деформационного шва

3) Размещение в проектное положение шнура "Вилатерм"

4) Установка инъекционных пакеров - MC-Injekt

5) Подготовка к работе инъекционного геля MC-Injekt GL95 TX

6) Подача инъекционного геля MC-Injekt GL95 TX двухкомпонентным пневматическим насосом (например, МС-I 700)

2. Основные этапы работ - ГЕРМЕТИЗАЦИЯ "ХОЛОДНОГО" ШВА

1) Визуальный осмотр, локальное местное вскрытие шва, проверка и уточнение принятых технических решений

2) Запечатка деформационного шва

3) Установка инъекционных пакеров - MC-Injekt

5) Подготовка к работе инъекционного материала - MC-Injekt 2300 , MC-Injekt 2300Top или MC-Injekt2700 *

6) Подача инъекционного гматериала пневматическим насосом (например, МС-I 510 или МС-I 700)

7) Контроль качества выполненных работ

* тип применяемого материала определяется в зависимости от типа протечки шва.

Важно! Выполнение работ по инъекционной гидроизоляции требует большого опыта работы в данном направлении и не прощает ошибок, так как себестоимость оборудования и инъекционных материалов достаточно высокая.

Температурные и осадочные швы

Для предотвращения деформаций в конструкциях их разделяют на отсеки (по длине) вертикальными зазорами – деформационными швами. Необходимость устройства таких швов определяется внешними условиями и геометрическими параметрами конструкции.

При любой выбранной системе перевязки возведение стены начинают с кладки углов. Важно устроить перевязку швов в углах не только таким образом, чтобы соблюдался выбранный рисунок перевязки в наружных верстах обеих пересекающихся стен, но и так, чтобы перевязка была выполнена с максимальным перекрытием швов.

По своему назначению деформационные швы бывают температурными и осадочными. Расположение деформационных швов обязательно указывают в проекте.

Осадочные швы

Осадочные швы устраивают для предотвращения неравномерной осадки конструкции по длине. Эти швы делят здание или сооружение на отсеки по всей высоте конструкций: от подошвы фундамента до карниза. Фундамент, разделенный на отсеки осадочным швом, называют разрезным. Устройство осадочного шва в кладке фундамента и стены выглядит по-разному (рис. 34).

Рисунок 34. Устройство осадочного шва в кирпичной кладке: а) фундамент (план); б) стена (план); в) продольный разрез по фундаменту и стене; 1 – кладка фундамента; 2 – кладка стены; 3 – осадочный шов; 4 – шпунт; 5 – зазор под шпунтом для осадки

Шов должен быть перпендикулярным стене или фундаменту. В месте шва кирпичи не перевязывают друг с другом, вместо этого устраивают прокладку из гидроизоляционного материала в два – три слоя (толь, рубероид, стеклоткань и т. д.). Шов в фундаменте выполняют прямым, в стене – со шпунтом (выступом с одной стороны шва и впадиной с другой стороны). Толщина шпунта составляет обычно половину кирпича, реже – четверть кирпича. Над обрезом фундамента под шпунтом оставляют зазор высотой в 1–2 кирпича (ряда) кладки для предотвращения давления от шпунта на кладку фундамента в случае неравномерной осадки. Все стыки между кладкой фундамента и кладкой стены при этом должны быть герметичными для защиты стены от проникновения влаги из фундамента.

Если фундамент выполнен из другого материала (например, железобетона), принципы устройства осадочного шва не меняются.

Толщина осадочного шва в кирпичной кладке должна составлять 10–20 мм, поэтому устройство швов не влияет на изменение длины здания (он просто заменяет собой часть вертикальных швов кладки).

С наружной стороны стен осадочные швы заделывают просмоленной паклей, силиконовым герметиком или специальным уплотнителем. Причем первый вариант (с просмоленной паклей) малоэффективен, поэтому при возможности следует выбирать другой вариант. С наружной стороны фундамента устраивают глиняный замок или другой вариант гидроизоляции.

Необходимость в устройстве осадочных швов возникает в нескольких случаях.

1. Примыкание новой стены к старой. В этом случае шов может быть устроен без шпунта, поскольку вырезать паз в старой стене – трудоемкое занятие.

2. Примыкание одной части здания к другой: например, когда веранда или крыльцо примыкает к основной части здания, и фундамент под пристройку может быть устроен с меньшим расходом материалов (меньшего сечения). При этом осадка крыльца и основной части здания будет разной, и при отсутствии осадочного шва могут возникнуть трещины и другие деформации кладки.

3. Строительство на грунтах с неравномерной осадкой. О таком свойстве грунтового основания можно судить по имеющимся на участке постройкам, поверхности земли без обработки (по ней можно увидеть ярко выраженную осадку грунта) или геологическим изысканиям. Если нет возможности определить состояние грунта по последнему варианту, прибегают к двум первым. Важно помнить, что трещины в постройках могут быть вызваны не только неравномерной осадкой грунтового основания, но и ошибками, допущенными в проектировании (неправильным расчетом фундамента, отсутствием осадочных швов в стене большой длины и т. д.). Однако если здания поблизости имеют трещины, лучше при возведении новой конструкции в любом случае предусмотреть в ней осадочные швы.

Температурные швы

Температурные (температурно-усадочные) швы защищают здание или сооружение от деформаций (трещин, разрывов кладки, перекосов, сдвигов кладки по швам), связанных с изменением температуры воздуха и самих конструкций. При пониженных температурах каменная кладка имеет свойство сжиматься, а в жару – расширяться. Так, на каждые 10 м длины кирпичная конструкция при изменении температуры с 20 °C до –20 °C сокращается в размерах на 5 мм. Кроме того, перепад температур может возникать в различных частях здания.

Температурные швы делят здание на отсеки по всей высоте стен, не включая фундамент. То есть, в отличие от осадочных швов, температурными швами фундамент не разделяют. Устройство температурного шва в кирпичной стене аналогично устройству осадочного: в виде шпунта с прослойкой изоляционного материала и заделкой герметиком с наружной стороны стены. Герметик для заделки температурного шва должен быть рассчитан на все температуры, возможные при эксплуатации здания или сооружения.

Толщина температурного шва в кирпичной кладке должна составлять 10–20 мм. Если кладку ведут при температуре воздуха 10 °C и выше, толщина шва может быть уменьшена.

Необходимость в устройстве температурных шов возникает при большой длине кирпичных стен и при значительных перепадах температуры воздуха между зимним и летним периодами года. Строительные нормы и правила (СНиП II-22-81 «Каменные и армокаменные конструкции») устанавливают максимально допустимые расстояния между температурными швами в кирпичных стенах. Эти расстояния зависят от средней температуры наружного воздуха наиболее холодной пятидневки года, вида кирпича и марки раствора. В наиболее сложных климатических условиях максимально допустимое расстояние между температурными швами в отапливаемых строениях в кладке из керамического кирпича составляет 50 м, в кладке из силикатного кирпича – 35 м. Поскольку стены индивидуальных строений редко достигают такой длины, температурные швы в них практически не устраивают. Для неотапливаемых закрытых построек максимальная длина стены без температурных швов может составлять: в кладке из керамического кирпича – 35 м, в кладке из силикатного кирпича – 24,5 м. Для не отапливаемых открытых строений (например, кирпичных заборов) эти нормативные величины соответственно равны 30 м и 21 м.

Устройство осадочных и температурных швов

Осадочными швами разделяют здание по длине на части для предупреждения неравномерной осадки. Вертикальными осадочными швами отделяют одну часть здания от другой по всей ширине и высоте от карниза до подошвы фундаментов. Расположение их указывают в проекте.

Осадочные швы в стенах делают в виде шпунта толщиной, как правило, 1 /2 кирпича, с прокладкой двух слоев толя, а в фундаментах - без шпунта. Над верхним обрезом фундамента под шпунтом стены оставляют пустое пространство - зазор на 1…2 кирпича кладки, чтобы при осадке шпунт не упирался в кладку фундамента, иначе в этом месте кладка может разрушиться.

Осадочные швы в фундаментах и стенах законопачивают просмоленной паклей.

Чтобы поверхностные и грунтовые воды не проникли в подвал через осадочные швы, с наружной стороны фундамента устраивают глиняный замок или принимают другие меры, предусмотренные проектом.

Температурные швы предохраняют стены от появления трещин при температурных деформациях. Насколько велики эти деформации, можно судить, например, по следующим данным: каменные здания, имеющие летом при температуре 20°С длину 20 м, зимой при температуре -20°С становятся короче на 10 мм.

Температурные швы делают в виде шпунта, однако в отличие от осадочных их устраивают только в пределах высоты стен здания. Толщину осадочных и температурных швов в стенах при кладке назначают 10…20 мм, меньшую - при температуре наружного воздуха во время кладки 10°С и выше.


Рис.1.
Системы перевязки
при кладке стен
толщиной 2 кирпича:
однорядная (цепная),
6 - многорядная; ряды:
t - тычковые,
2,..6 - ложковые,
7 - забутка


Рис.2.
Инструменты для
кирпичной кладки:
а - кельма,
б - растворная лопата,
в - расшивки для выпуклых
и вогнутых швов,
г - молоток-кирочка,
д - швабровка

Рис.3.
Контрольно-измерительные инструменты:
а - отвес, б - рулетка, в - складной
метр, г - угольник, д - строительный
уровень, е -- дюралюминиевое правило;
ампулы: t - основная, 2 - боковая


Рис.4.
Сумка с инструментами каменщика

Рис. 5. Инвентарная деревенная
порядовка (а) и крепление порядовки
к кладке (6): 1 - рейка,
2 - держатель, 3 - клин


Рис.6.
Рис. 20. Поддоны для кирпича:
а - на брусках, б - с крюками


Рис.7.
Схемы перевязки кирпича
на поддонах а, б - перекрестная, в - <в елку>

Рис 8. Установка захват-футляра
на поддон с крюками


Рис.9.
Пакетная перевозка
силикатного кирпича.
а, б - положение пирамидок
в кузове автомобиля при
транспортировании,
разгрузка пирамидок
в - первой, г - второй,
1 - кузов автомобиля,
2 - пирамидка,
3 - ограждающий пояс,
4 - замковое устройство,
5 - полоз из швеллера,
6 - петля на поддоне,
7 - блок, 8 - лебедка,
9 - канат, 10 - поддоны


Рис.10.
Самозатягивающийся (зажимный)
захват для силикатного кирпича
1 - труба-распорка,
2 - серьга, 3 - тяга,
4 - рама каркаса, 5 - челюсть

Рис. 11. Раскладка кирпича для
наружной версты:
ряды а - тычковый,
6 - ложковый


Рис.12.
Перегрузка раствора из
автосамосвала а -
раздаточные бадьи,
в - в установку для
перемешивания и
орционной выдачи раствора,
б - из раздаточной бадьи
в ящик для раствора,
1 - раздаточная бадья,
2 - ящик для раствора,
3 - установка для приема
и выдачи раствора


Рис.13.
Установка для приема,
подогрева, перемешивания
и порционной выдачи раствора.
1 - рама, 2 - затвор секторный,
3 - шнек, 4 - емкость,
5 - моторный отсек, 6 - крышка,
7 - канатная подвеска


Рис.14.
Расстилание и разравнивание
раствора для рядов:
а - ложкового, б - тычкового

Рис.15.
Кладка способом вприжим ложкового ряда наружной

Рис.16.
Кладка способом вприжим тычкового ряда наружной
версты (цифрами показана последовательность операций)

Рис.17.
Кладка способом вприсык рядов
(цифрами показана последовательность
операций) а - ложкового, б - тычкового

Рис.18.
Кладка способом вприсык
с подрезкой раствора
тычкового ряда (цифрами
показана последовательность операций)

Рис.19.
Кладка забутки способом в по-луприсык
(цифрами показана последовательность операций):
а - тычками, б - ложками

Рис.20.
Виды (а...е) расшивки швов
и приемы (ж, з) выполнения ее:
прямоугольные: а - заглубленная, б -
вподрезку; в - выпуклая; г - вогнутая;
д - односрезная; е - двухсрезная


Рис.21.
Последовательность (показана цифрами)
укладки кирпича при различных перевязках (а...г)
и положения (д, е) каменщика:
а - однорядной, пятирядной: б - ступенчатым способом,
в, г - смешанным способом
(буквой п обозначены ряды, укладываемые камен


Рис.22.
Кирпичи (линиями сверху
показаны условные обозначения,
принятые в чертежах): а- целый,
б - трехчетвертка, в - половинка,
я - четвертка


Рис.23.
Рубка и теска кирпича:а - отмеривание длины
трехчетвертки, 6 - зарубка на ручке молотка,
в - проверка длины частей кирпича;
г - отметка линии рубки трехчетвертки
лезвием молотка; д - насечка ударом,
направленным перпендикулярно
кирпичу, е, и - молотком, ж -
неправильный прием, з - кельмой


Рис.24.
Установка шнура-причалки:
а - причальная скоба, б - перестановка
скобы со шнуром, в - предохранение шнура от провисания


Рис.25.
Укрепление шнура-причалки
двойной петлей за гвозди


Рис.26.
Цепная система перевязки при
кладке ограничений стены:
а - толщиной 1"/2 кирпича,
б - 2 кирпиче, в-2(/2 кирпича


Рис.27.
Цепная система перевязки при
кладке прямого угла и ограничения стен
толщиной: а - 1 кирпич, б- 1"/2 кирпича,
в - 2 кирпича, г - 2"/2 кирпича

Рис.28.
Цепная система перевязки:
при примыкании стен толщиной:
а - 1"/2 кирпича, б - 2 кирпича,
в - при пересечении стен


Рис.29.
Многорядная система перевязки при
кладке углов и вертикальных
ограничений стен: а - толщиной
1 кирпич, б - 1"/2 кирпича, в - 2 кирпича


Рис.30.
Многорядная система
перевязки при пересечении стен
толщиной 2 и 1"/2 кирпича со стеной gw,
толщиной 2 кирпича


Рис.31.
Кладка стены с нишей
при многорядной системе перевязки


Рис.32.
Вентиляционные каналы и газоходы:
схемы кладки в стенах толщиной: а - 1 "/2
кирпича, б - 2 кирпича; в - разделка дымового
канала у деревянного перекрытия; г - отвод канала;
1 - кирпич, 2 - цементный раствор, 3 - войлок,
пропитанный глиной, 4 - мешок для сажи,
5 - место подключения печи к каналу,
6 - наклонный участок


Рис.33.
Трехрядная система перевязки при
кладке столбов сечением: а - 2X2 кирпича,
б - 1"/2Х2 кирпича, в - 2Х2"/2 кирпича


Рис.34.
Трехрядная система перевязки
при кладке простенков
а - 2X3 кирпича, 6 - 2X3 /2 кирпича

Рис.35.
Армирование кирпичных столбов сетками:
а - прямоугольными,
б - зигзагообразными,
1 - выступающие концы прутков сеток


Рис.36.
Облегченная кирпично-бетонная кладка
а - при расположении тычков в одной
плоскости б- то же вразбежку
1 - тычковые ряды, 2 - ложковые ряды
3 - легкий бетон


Рис.37.
Облегченная колодцевая кладка угла
а - общий вид б - поперечные стенки
с уширенными швами в - кладка
с армированными растворными
диафрагмами f - продольные стенки,
2 - поперечные стенки, 3 - заполнение
(бетон или засыпка) 4 - пробка для крепления
оконной коробки 5 - перемычка 6 - армированная
растворная диафрагма


Рис.38.
Колодцевая кладка в процессе возведения
1 4 - ряды кладки 5 - поперечная стенка, 6 - раскладка
кирпича на стене 7 - заполнение колодцев, 8 - раствор
ная постель для кладки внутренней стенки


Рис.39.
Кладка с уширенным швом:
а - кирпичная,
б - из легкобетонных камней c щелевыми пустотами,
1 - уширенным шов,
2 - продольная половинка>
3 - целый камень


Рис.40.
Кладка рядовых перемычек:
9 - фасад, б - разрез, в - кладка по дощатой
опалубке, 1 - арматурные стержни, 2 - доски,
3 - деревянные кружала


Рис.41.
Кладка перемычек: 4-клинчатой,
б- лучковой, в - арочной (полуциркульной),
г - швы кладки; 1 - на-йравление опорной
плоскости, 2 - замковый кирпич, 3 - шнур,
4 - шаблон-угольник, f 5 - клинья


Рис.42.
Круглый канализационный колодец:
1 - люк, 2 - кладка в месте сужения,
3 - карман, 4 - бетонное основание,
5 - ходовые скобы


Рис.43.
Переход от осадочного шва фундамента
к осадочному шву стены:
а - разрез, б - план стены,
в - план фундамента;
t - фундамент, 2 - стенка,
3 - шов стены, 4 - шпунт,
5 - зазор для осадки, 6 - шов фундамента
Организация производства кирпичной кладки