ПВХ трубы        02.03.2019   

Расчет теплопотерь дома через ограждающие конструкции. Сравнение теплопотерь домов из разного материала

Точный расчет теплопотерь дома - занятие кропотливое и небыстрое. Для его производства необходимы исходные данные, включая размеры всех ограждающих конструкций дома (стен, дверей, окон, перекрытий, полов).

Для однослойных и/или многослойных стен, а также перекрытий коэффициент теплопередачи несложно вычислить путем деления коэффициента теплопроводности материала на толщину его слоя в метрах. Для многослойной конструкции общий коэффициент теплопередачи будет равен величине, обратной сумме теплосопротивлений всех слоев. Для окон можно воспользоваться таблицей теплотехнических характеристик окон.

Стены и полы, лежащие на грунте, рассчитываются по зонам, поэтому в таблице необходимо создавать отдельные строки для каждой из них и указывать соответствующий коэффициент теплопередачи. Разделение по зонам и значения коэффициентов указаны в правилах обмера помещений .

Графа 11. Основные теплопотери. Здесь производится авторасчет основных теплопотерь на основе введенных данных в предыдущих ячейках строки. В частности, используются Разность температур, Площадь, Коэффициент теплопередачи и Коэффициент положения. Формула в ячейке:

Графа 12. Добавка на ориентацию. В этой графе производится авторасчет добавки на ориентацию. В зависимости от содержимого ячейки Ориентация вставляется соответствующий коэффициент. Формула расчета ячейки выглядит так:

ЕСЛИ(H9="В";0,1;ЕСЛИ(H9="ЮВ";0,05;ЕСЛИ(H9="Ю";0;ЕСЛИ(H9="ЮЗ";0;ЕСЛИ(H9="З";0,05;ЕСЛИ(H9="СЗ";0,1;ЕСЛИ(H9="С";0,1;ЕСЛИ(H9="СВ";0,1;0))))))))

Эта формула вставляет в ячейку коэффициент по следующей схеме:

  • Восток - 0.1
  • Юго-восток - 0.05
  • Юг - 0
  • Юго-запад - 0
  • Запад - 0.05
  • Северо-запад - 0.1
  • Север - 0.1
  • Северо-восток - 0.1

Графа 13. Добавка прочая. Здесь вводится коэффициент добавки при расчете пола или дверей в соответствии с условиями в таблице:

Графа 14. Теплопотери. Здесь окончательный расчет теплопотерь ограждения по данным строки. Формула ячейки:

По мере расчетов можно создавать ячейки с формулами суммирования теплопотерь по помещениям и выведение суммы теплопотерь всех ограждений дома.

Существуют еще теплопотери на инфильтрацию воздуха. Ими можно пренебречь, поскольку они в какой-то степени компенсируются бытовыми тепловыделениями и теплопоступлениями от солнечной радиации. Для более полного, исчерпывающего расчета теплопотерь можно использовать методику, описанную в справочном пособии .

В итоге для расчета мощности системы отопления полученную сумму теплопотерь всех ограждений дома увеличиваем на 15 - 30%.

Другие, более простые способы расчета теплопотерь:

  • быстрый расчет в уме приблизительный способ расчета ;
  • несколько более сложный расчет с применением коэффициентов ;
  • самый точный способ расчета теплопотерь в режиме реального времени;

Выберите город Выберите город Брест Витебск Волгоград Днепропетровск Екатеринбург Запорожье Казань Киев Луганск Львов Минск Москва Нижний Новгород Новосибирск Одесса Омск Пермь Рига Ростов-на-Дону Самара Санкт-Петербург Симферополь Уфа Харьков Челябинск Чернигов t нар = - o C

Введите температуру воздуха в помещении; t вн = + o C

Теплопотери через стены развернуть свернуть

Вид фасада По умолчанию Без вентилируемой воздушной прослойки С вентилируемой воздушной прослойкой α =

Площадь наружных стен, кв.м.

Толщина первого слоя, м.

Толщина второго слоя, м.

Толщина третьего слоя, м.

Теплопотери через стены, Вт

Теплопотери через окна развернуть свернуть

Выберите остекление

По умолчанию Однокамерный стеклопакет Двухкамерный стеклопакет Однокамерный стеклопакет с селективным покрытием Двухкамерный стеклопакет с аргоновым заполнением Двойное остекление в раздельных переплетах Два однокамерных стеклопакета в спаренных переплетах k =

Введите площадь окон, кв.м.

Теплопотери через окна

Теплопотери через потолки развернуть свернуть

Выберите вид потолка

По умолчанию Мансарда. Между потолком и кровлей воздушная прослойка Мансарда. Кровля плотно прилегает к потолку Потолок под неотапливаемым чердаком α =

Введите площадь потолка, кв.м.

Материал первого слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина первого слоя, м.

Материал второго слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина второго слоя, м.

Материал третьего слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина третьего слоя, м.

Теплопотери через потолок

Теплопотери через пол развернуть свернуть

Выберите вид пола

По умолчанию Над холодным подвалом, сообщающимся с наружным воздухом Над неотапливаемым подвалом со световыми проемами в стенах Над неотапливаемым подвалом без световых проемов в стенах Над техническим подпольем ниже уровня земли Пол на грунте α =

Введите площадь пола, кв.м.

Материал первого слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина первого слоя, м.

Материал второго слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина второго слоя, м.

Материал третьего слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина третьего слоя, м.

Теплопотери через пол

Материал первого слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина первого слоя, м.

Материал второго слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина второго слоя, м.

Материал третьего слоя Выберите материал Бетон Железобетон Пенобетон 1000 кг/куб.м. Пенобетон 800 кг/куб.м. Пенобетон 600 кг/куб.м. Газоблок D400 Aeroc на клею Шлакобетон Цементно-песчаный раствор Porotherm P+W на термоиз. растворе Кладка из пустотелого керам. кирпича Кладка из силикатного кирпича Кладка из сплошного керам. кирпича Древесина Фанера ДВП ДСП Минвата Пенопласт Пенополистирол Гипсокартон λ =

Толщина третьего слоя, м.

Площадь зоны 1, кв.м. развернуть (откроется в новом окне)

Очень часто на практике принимают теплопотери дома из расчета средних около 100 Вт/кв.м. Для тех, кто считает деньги и планирует обустроить дом без лишних капиталовложений и с низким расходом топлива, такие расчеты не подойдут. Достаточно будет сказать, что теплопотери хорошо утепленного дома и неутепленного могут отличаться в 2 раза. Точные расчеты по СНиП требуют большого времени и специальных знаний, но эффект от точности не ощутится должным образом на эффективности системы отопления.

Данная программа разрабатывалась с целью предложить лучший результат цена/качество, т.е. (затраченное время)/(достаточная точность).

Коэффициенты теплопроводности строительных материалов взяты по , приложение 3 для нормального влажностного режима нормальной зоны влажности.

03.12.2017 - скорректирована формула расчета теплопотерь на инфильтрацию. Теперь расхождений с профессиональными расчетами проектировщиков не обнаружено (по теплопотерям на инфильтрацию).

10.01.2015 - добавлена возможность менять температуру воздуха внутри помещений.

FAQ развернуть свернуть

Как посчитать теплопотери в соседние неотапливаемые помещения?

По нормам теплопотери в соседние помещения нужно учитываеть, если разница температур между ними превышает 3 o C. Это может быть, например, гараж. Как с помощью онлайн-калькулятора посчитать эти теплопотери?

Пример. В комнате у нас должно быть +20, а в гараже мы планируем +5. Решение . В поле t нар ставим температуру холодной комнаты, в нашем случае гаража, со знаком "-". -(-5) = +5 . Вид фасада выбираем "по умолчанию". Затем считаем, как обычно.

Внимание! После расчета потерь тепла из помещения в помещение не забываем выставлять температуры обратно.

Может ли замерзнуть вода в скважине?Нет, вода не замерзнет, т.к. и в песчаной, и в артезианской скважине вода находится ниже точки промерзания грунта. Можно ли в песчаную скважину системы водоснабжения установить трубу диаметром больше 133 мм (у меня насос под большую трубу)?Не имеет смысла при обустройстве песчаной скважины устанавливать трубу большего диаметра, т.к. производительность песчаной скважины небольшая. Для таких скважин специально предназначен насос «Малыш». Может ли проржаветь стальная труба в скважине водоснабжения?Достаточно медленно. Так как при обустройстве скважины загородного водоснабжения производится её гермитизация, в скважину нет доступа кислорода и процесс окисления идет очень медленно. Какие бывают диаметры труб для индивидуальной скважины? Какова производительность скважины при различных диаметрах труб?Диаметры труб для обустройства скважины на воду:114 - 133 (мм) - производительность скважины 1 - 3 куб.м./час;127 - 159 (мм) - производительность скважины 1 - 5 куб.м./час;168 (мм) - производительность скважины 3 - 10 куб.м./час;ПОМНИТЕ! Необходимо, что бы н...

Каждое здание, независимо от конструктивных особенностей, пропускает тепловую энергию через ограждения. Потери тепла в окружающую среду необходимо восстанавливать с помощью системы отопления. Сумма теплопотерь с нормируемым запасом – это и есть требуемая мощность источника тепла, которым обогревается дом. Чтобы создать в жилище комфортные условия, расчет теплопотерь производят с учетом различных факторов: устройства здания и планировки помещений, ориентации по сторонам света, направления ветров и средней мягкости климата в холодный период, физических качеств строительных и теплоизоляционных материалов.

По итогам теплотехнического расчета выбирают отопительный котел, уточняют количество секций батареи, считают мощность и длину труб теплого пола, подбирают теплогенератор в помещение – в общем, любой агрегат, компенсирующий потери тепла. По большому счету, определять потери тепла нужно для того, чтобы отапливать дом экономно – без лишнего запаса мощности системы отопления. Вычисления выполняют ручным способом либо выбирают подходящую компьютерную программу, в которую подставляют данные.

Как выполнить расчет?

Сначала стоит разобраться с ручной методикой – для понимания сути процесса. Чтобы узнать, сколько тепла теряет дом, определяют потери через каждую ограждающую конструкцию по отдельности, а затем складывают их. Расчет выполняют поэтапно.

1. Формируют базу исходных данных под каждое помещение, лучше в виде таблицы. В первом столбце записывают предварительно вычисленную площадь дверных и оконных блоков, наружных стен, перекрытий, пола. Во второй столбец заносят толщину конструкции (это проектные данные или результаты замеров). В третий – коэффициенты теплопроводности соответствующих материалов. В таблице 1 собраны нормативные значения, которые понадобятся в дальнейшем расчете:

Чем выше λ, тем больше тепла уходит сквозь метровую толщину данной поверхности.

2. Определяют теплосопротивление каждой прослойки: R = v/ λ, где v – толщина строительного или теплоизоляционного материала.

3. Делают расчет теплопотерь каждого конструктивного элемента по формуле: Q = S*(Т в -Т н)/R, где:

  • Т н – температура на улице, °C;
  • Т в – температура внутри помещения,°C;
  • S – площадь, м2.

Разумеется, на протяжении отопительного периода погода бывает разной (к примеру, температура колеблется от 0 до -25°C), а дом обогревается до нужного уровня комфорта (допустим, до +20°C). Тогда разность (Т в -Т н) варьируется от 25 до 45.

Чтобы сделать расчет, нужна средняя разница температур за весь отопительный сезон. Для этого в СНиП 23-01-99 «Строительная климатология и геофизика» (таблица 1) находят среднюю температуру отопительного периода для конкретного города. Например, для Москвы этот показатель равен -26°. В этом случае средняя разница составляет 46°C. Для определения расхода тепла через каждую конструкцию складывают теплопотери всех ее слоев. Так, для стен учитывают штукатурку, кладочный материал, внешнюю теплоизоляцию, облицовку.

4. Считают итоговые потери тепла, определяя их как сумму Q внешних стен, пола, дверей, окон, перекрытий.

5. Вентиляция. К результату сложения добавляется от 10 до 40 % потерь на инфильтрацию (вентиляцию). Если установить в дом качественные стеклопакеты, а проветриванием не злоупотреблять, коэффициент инфильтрации можно принять за 0,1. В отдельных источниках указывается, что здание при этом вообще не теряет тепло, поскольку утечки компенсируются за счет солнечной радиации и бытовых тепловыделений.

Подсчет вручную

Исходные данные. Одноэтажный дом площадью 8х10 м, высотой 2,5 м. Стены толщиной 38 см сложены из керамического кирпича, изнутри отделаны слоем штукатурки (толщина 20 мм). Пол изготовлен из 30-миллиметровой обрезной доски, утеплен минватой (50 мм), обшит листами ДСП (8 мм). Здание имеет подвал, температура в котором зимой составляет 8°C. Потолок перекрыт деревянными щитами, утеплен минватой (толщина 150 мм). Дом имеет 4 окна 1,2х1 м, входную дубовую дверь 0,9х2х0,05 м.

Задание: определить общие теплопотери дома из расчета, что он находится в Московской области. Средняя разность температур в отопительный сезон – 46°C (как было сказано ранее). Помещение и подвал имеют разницу по температуре: 20 – 8 = 12°C.

1. Теплопотери через наружные стены.

Общая площадь (за вычетом окон и дверей): S = (8+10)*2*2,5 – 4*1,2*1 – 0,9*2 = 83,4 м2.

Определяется теплосопротивление кирпичной кладки и штукатурного слоя:

  • R клад. = 0,38/0,52 = 0,73 м2*°C/Вт.
  • R штук. = 0,02/0,35 = 0,06 м2*°C/Вт.
  • R общее = 0,73 + 0,06 = 0,79 м2*°C/Вт.
  • Теплопотери сквозь стены: Q ст = 83,4 * 46/0,79 = 4856,20 Вт.

2. Потери тепла через пол.

Общая площадь: S = 8*10 = 80 м2.

Вычисляется теплосопротивление трехслойного пола.

  • R доски = 0,03/0,14 = 0,21 м2*°C/Вт.
  • R ДСП = 0,008/0,15 = 0,05 м2*°C/Вт.
  • R утепл. = 0,05/0,041 = 1,22 м2*°C/Вт.
  • R общее = 0,03 + 0,05 + 1,22 = 1,3 м2*°C/Вт.

Подставляем значения величин в формулу для нахождения теплопотерь: Q пола = 80*12/1,3 = 738,46 Вт.

3. Потери тепла через потолок.

Площадь потолочной поверхности равна площади пола S = 80 м2.

Определяя теплосопротивление потолка, в данном случае не берут во внимание деревянные щиты: они закреплены с зазорами и не являются барьером для холода. Тепловое сопротивление потолка совпадает с соответствующим параметром утеплителя: R пот. = R утепл. = 0,15/0,041 = 3,766 м2*°C/Вт.

Величина теплопотерь сквозь потолок: Q пот. = 80*46/3,66 = 1005,46 Вт.

4. Теплопотери через окна.

Площадь остекления: S = 4*1,2*1 = 4,8 м2.

Для изготовления окон использован трехкамерный ПВХ профиль (занимает 10 % площади окна), а также двухкамерный стеклопакет с толщиной стекол 4 мм и расстоянием между стеклами 16 мм. Среди технических характеристик производитель указал тепловые сопротивления стеклопакета (R ст.п. = 0,4 м2*°C/Вт) и профиля (R проф. = 0,6 м2*°C/Вт). Учитывая размерную долю каждого конструктивного элемента, определяют среднее теплосопротивление окна:

  • R ок. = (R ст.п.*90 + R проф.*10)/100 = (0,4*90 + 0,6*10)/100 = 0,42 м2*°C/Вт.
  • На базе вычисленного результата считаются теплопотери через окна: Q ок. = 4,8*46/0,42 = 525,71 Вт.

Площадь двери S = 0,9*2 = 1,8 м2. Тепловое сопротивление R дв. = 0,05/0,14 = 0,36 м2*°C/Вт, а Q дв. = 1,8*46/0,36 = 230 Вт.

Итоговая сумма теплопотерь дома составляет: Q = 4856,20 Вт + 738,46 Вт + 1005,46 Вт + 525,71 Вт + 230 Вт = 7355,83 Вт. С учетом инфильтрации (10 %) потери увеличиваются: 7355,83*1,1 = 8091,41 Вт.

Чтобы безошибочно посчитать, сколько тепла теряет здание, используют онлайн калькулятор теплопотерь. Это компьютерная программа, в которую вводятся не только перечисленные выше данные, но и различные дополнительные факторы, влияющие на результат. Преимуществом калькулятора является не только точность расчетов, но и обширная база справочных данных.

Принято считать, что для средней полосы России мощность отопительных систем должна рассчитываться исходя из соотношения 1 кВт на 10 м 2 отапливаемой площади. Что говорится в СНиП и каковы реальные расчетные теплопотери домов, построенных из различных материалов?

СНиП указывает на то, какой дом можно считать, скажем так, правильным. Из него мы позаимствуем строительные нормы для Московского региона и сравним их с типичными домами, построенными из бруса, бревна, пенобетона, газобетона, кирпича и по каркасным технологиям.

Как должно быть по правилам (СНиП)

Однако взятые нами значения в 5400 градусо-суток для московского региона являются пограничными к значению 6000, по которому в соответствии со СНиПом сопротивление теплопередаче стен и кровли должно составлять 3,5 и 4,6 м 2 ·°С/Вт соответственно, что эквивалентно 130 и 170 мм минеральной ваты с коэффициентом теплопроводности λА=0,038 Вт/(м·°К).

Как в реальности

Зачастую люди строят «каркасники», бревенчатые, брусовые и каменные дома исходя из доступных материалов и технологий. Например, чтобы соответствовать СНиП, диаметр бревен сруба должен быть больше 70 см, но это абсурд! Потому чаще всего строят так, как удобнее или как больше нравится.

Для сравнительных расчетов мы воспользуемся удобным калькулятором теплопотерь, который расположен на сайте его автора. Для упрощения расчетов возьмем одноэтажное прямоугольное помещение со сторонами 10 х 10 метров. Одна стена глухая, на остальных по два небольших окна с двухкамерными стеклопакетами, плюс одна утепленная дверь. Крыша и потолок утеплены 150 мм каменной ваты, как наиболее типичный вариант.

Кроме теплопотерь через стены есть еще понятие инфильтрации – проникновения воздуха через стены, а также понятие бытового тепловыделения (от кухни, приборов и т.п.), которое по СНиП приравнивается к 21 Вт на м 2 . Но мы это учитывать сейчас не будем. Равно как и потери на вентиляцию, потому как это требует и вовсе отдельного разговора. Разница температур принята за 26 градусов (22 в помещении и -4 снаружи – как усредненное за отопительный сезон в московском регионе).

Итак, вот итоговая диаграмма сравнения теплопотерь домов из различных материалов :

Пиковые теплопотери рассчитаны для наружной температуры -25°С. Они показывают, какой максимальной мощности должна быть система отопления. «Дом по СНиП (3,5, 4,6, 0,6)» – это расчет исходя из более строгих требований СНиП к тепловому сопротивлению стен, кровли и пола, который применим к домам в чуть более северных регионах, нежели чем Московская область. Хотя, зачастую, могут применяться и к ней.

Главный вывод – если при строительстве вы руководствуетесь СНиП, то мощность отопления следует закладывать не 1 кВт на 10 м 2 , как принято считать, а на 25-30% меньше. И это еще без учета бытового тепловыделения. Однако соблюсти нормы не всегда получается, а детальный расчет отопительной системы лучше доверить квалифицированным инженерам.

Также вам может быть интересно :