Полиэтиленовые трубы        19.08.2018   

Коррозия нержавеющей стали – как защититься от нее? Условия возникновения, методы выявления и способы предотвращения склонности к межкристаллитной коррозии сварных соединений высоколегированных сталей

Одним из дефектов аустенитно-мартенситных и аустенитно-ферритных сталей является склонность их при сварке к перегреву и охрупчиванию зоны влияния. Это вызывается ростом зерна в связи с перегревом ферритной фазы, образующейся вблизи зоны сплавления. Охрупчиванию способствует также превращение обогащенного углеродом аустенита (при высокой температуре аустенит переобогащается углеродом) в мартенсит с охлаждением шва. Надо иметь в виду, что в сварных соединениях аустенитно-ферритных и аустенитно-мартенситных сталей возможно выделение водорода по границам зерен. Для предупреждения этого сварное соединение подвергают отпуску в течение 1-2 ч при температуре 150 °С.
Высоколегированные стали и сплавы, как правило, обладают увеличенным до 1,5 раза коэффициентом линейного расширения при нагревании и пониженным в 1,5-2 раза коэффициентом теплопроводности по сравнению с низкоуглеродистыми сталями. Большинство этих сталей склонно к образованию горячих или холодных трещин при сварке, что усложняет процесс обеспечения качества сварных соединений с требуемыми свойствами. При дуговой сварке высоколегированных сталей следует предохранять поверхности металла от попадания на него брызг металла и шлака, так как они, повреждая поверхность, могут быть причиной коррозии или концентрации напряжений, ослабляющих конструкцию. Для предохранения от приваривания брызг на поверхность металла, прилегающую к шву, наносят защитное покрытие (кремнийорганический лак, грунт ВЛ-02, ВЛ-023 и др.).
Высокохромистые мартенситные стали (20X13, 14Х17Н2 и др.), мартенситно-ферритные (12X13, 14Х12Н2МФ и др.)-это закаливающиеся стали, склонные к образованию холодных трещин. В меньшей степени к ним относятся стали ферритного класса (12X17, 08Х17Т, 08Х18Т1 и др.). Для предотвращения трещинообразования применяют предварительный или сопутствующий подогрев, особенно необходимый с увеличением содержания в стали углерода и ее толщины. После сварки мартенситные, мартенситно-ферритные, а иногда и ферритные стали подвергают высокому отпуску при температуре 680-720 °С, а жаропрочные (20X13, 12X13 и др.) - при температуре 730-750 °С. Отпуск улучшает структуру, механические свойства и коррозионную стойкость.
Следует учитывать, что коррозионная стойкость сталей, не содержащих титана или ниобия, при нагревании более 500 °С постепенно падает, поэтому в сталь вводят эти элементы и дополнительно легируют молибденом, ванадием и другими добавками, например мар-тенситная сталь 18X1ШНФБ; мартенситно-ферритная 18Х12ВМБФР; ферритная 15Х25Т и др. Для сварки мартенситных, мартенситно-ферритных и ферритных сталей применяют электроды, стержни и покрытия которых обеспечивают получение наплавленного металла, близкого по химическому составу к основному металлу, например мартенситную сталь марки 15X11 ВМФ сваривают электродами Э12Х11НВМФ марки КТИ-10; мартенситно-ферритную сталь марки 12X13 -электродами Э12Х13 марки УОНИИ-13/ШЗ и т.д. Если конструкции из стали этого класса работают на статическую нагрузку и к швам не предъявляются требования высокой прочности, сварку можно выполнить аустенитными или аустенитно-ферритными электродами, например ферритную сталь 15Х25Т сваривают электродами Э02Х20Н14Г2М2 марки ОЗЛ-20, при этом отпуск после сварки можно не проводить.
Для сварки используют режим с малой погонной энергией для предотвращения роста зерна и охрупчивания зоны термического влияния. В покрытии электродов, применяемых для сварки высокохромистых сталей, не должно быть газообразующих органических соединений, а газовая защита должна осуществляться за счет диссоциации карбонатов и выделяемой при этом СО (окиси углерода). Как и при сварке среднелегированных сталей, требования к качеству сборки и очистки металла перед сваркой остаются такими же и еще более ужесточаются. Высокохромистые стали рассмотренных классов свариваются также в среде аргона вольфрамовым электродом. Этим способом рекомендуется соединять детали толщиной до 5-6 мм с подогревом, последующая термообработка не требуется. Целесообразно сваривать вольфрамовым электродом корневые швы более толстой стали, что обеспечивает хорошее формирование обратного валика, остальные слои шва выполняют электродуговой ручной сваркой или другим способом.
Аустенитные хромоникелевые стали особенно чувствительны к увеличению углерода и серы, а также других элементов, образующих легкоплавкие эвтектики.

МЕЖКРИСТАЛЛИТНАЯ КОРРОЗИЯ

Наряду с рассмотренными видами коррозии при сварке сталей различают еще межкристаллитную (структурную) коррозию.
Межкристаллитной коррозией называется процесс физико-химического разрушения металла по границам кристаллитов (зерен) под действием агрессивной среды, при котором агрессивная среда проникает в глубь металла по границам зерен, нарушая метал¬лическую связь между зернами. Приложение даже незначительной нагрузки к такому металлу приводит к его разрушению по границам зерен. Межкристаллитной коррозии в наибольшей степени подвержены аустенитные нержавеющие стали, но это может иметь место и в высокохромистых сталях, а также швах ферритного, полуферри.тного и мартенситного классов.
Аустенитные стали, например, сталь 12Х18Н9Т, приобретают склонность к Межкристаллитной коррозии после относительно длительного нагрева в интервале температур 450-850° С. Эта склонность зависит от большого числа факторов и особенно от химического состава стали, продолжительности ее пребывания при критических температурах.
Влияние углерода на коррозионную стойкость стали типа 18-9 начинает сказываться при его содержании более 0,02-0,03%. Однако это критическое содержание может быть повышено при уменьшении времени выдержки при критических температурах или же более высокой скорости нагрева и охлаждения.
Из всех существующих теорий о причине Межкристаллитной коррозии аустенитных сталей наиболее вероятной является теория о выделении карбидов хрома по границам зерна, сопровождающимся обеднением хромом участков металла, прилегающих к границам зерна. Аустенит в высоколегированной аустенитной стали представляет собой твердый раствор хрома, никеля, марганца, углерода и других элементов в железе. Углерод обладает ограниченной растворимостью в аустените; при комнатной температуре стабильное содержание углерода в твердом растворе аустенита не превышает 0,02-0,03%. При более высоком содержании углерода в стали и быстром ее охлаждении (закалке) он фиксируется в аустените в виде пересыщенного нестабильного твердого раствора. При этом сталь невосприимчива к Межкристаллитной коррозии (рис. 1).
Однако последующий нагрев металла в интервале критических температур приводит к выделению избыточного углерода из твердого раствора на границе зерен в виде карбидов хрома Сr4С.
В результате выделения богатых хромом карбидов содержание хрома в пограничных слоях аустенитных зерен падает ниже 12% и оказывается недостаточным для сохранения коррозионной стойкости в условиях воздействия агрессивных сред. Разное содержание хрома в самом зерне и его пограничном слое при действии агрессивной среды (электролита) приводит к появлению гальванических микропар, где само зерно служит катодом, а обедненные хромом пограничные слои - анодом, который коррелирует, вызывая на этих участках зерна процесс интенсивной межкристал литной коррозии.

Рис. 1. Схема распределения хрома по зерну аустенитной стали, склонной к межкристаллитной коррозии: а- в стабилизированном состоянии (отсутствие коррозии); б- после нагрева в критическом интервале температур и при воздействии агрессивной среды (наличие коррозии): 1 - условная форма аустенитного зерна; 2 - карбиды хрома на границах зерен; 3 - объединенные хромом пограничные участки; 4 - линии распределения хрома по аустенитному зерну.

На рис. 2 приведена зависимость межкристаллитной коррозии стали от температуры и времени. Кривая иллюстрирует зависимость между температурой нагрева сварных соединений стали типа 18-9 и склонностью их к межкристаллитной коррозии.



Рис. 2. Зависимость склонности аустенитной стали к межкристаллитной коррозии от температуры и продолжительности нахождения этой стали при данной температуре (tкр - время минимальной устойчивости аустенита)

Как следует из этой зависимости, по мере повышения температуры нагрева стали до 730° С критическое время приобретения сталью склонности к межкристаллитной коррозии сокращается от не¬скольких часов до долей минуты. При достижении 800-850° С восприимчивость к межкристаллитной коррозии вообще не наступает. Это объясняется различными скоростями протекания двух взаимно противоположных процессов - выделения карбидов хрома и диффузии хрома из центральной части зерна аустенита к его периферии. По мере повышения температуры от 450 до 730° С скорость выпадения углерода из пересыщенного раствора и образование карбидов хрома протекают быстрей, чем скорость диффузии хрома. Вследствие этого сталь за более короткое время становится чувствительной к межкристаллитной коррозии. Дальнейшее повышение температуры от 730 до 850° С приводит ко все большему ускорению диффузии хрома Даже из центральных участ¬ков зерен аустенита, и местное обеднение хромом пограничных участков зерен протекает не так быстро, как при более низких температурах. Кроме того, при этих температурах уже сказывается процесс коагуляции и растворения карбидов в аустените. По этой же причине более длительная выдержка стали при данной температуре приводит к восстановлению временно утерянной стойкости против межкристаллитной коррозии (штриховая линия), а при температуре 850° С и выше восприимчивость к межкристаллитной коррозии вообще не наступает.
Увеличение содержания углерода в аустенитных сталях будет интенсифицировать процесс образования карбидов хрома, и склонность к межкристаллитной коррозии будет возрастать. В меньшей степени на склонность к межкристаллитной коррозии влияют элементы-аустенизаторы: никель и азот; при увеличении содержания этих элементов в аустенитных сталях для уменьшения склонности стали к коррозии следует уменьшить в ней содержание углерода.
Увеличение концентрации хрома в аустенитной стали уменьшает степень обеднения хромом пограничных участков и увеличивает стойкость стали против коррозии. Введения в сталь молибдена увеличивает стойкость стали против коррозии, так как он тормозит процесс выделения карбидов хрома, а также потому, что является активным ферритизатором."А сталь с аустенитно-ферритной структурой (3-5% феррита) менее склонны к межкристаллитной коррозии, чем чисто аустенитные, так как при этом наблюдается измельчение зерна и возрастание количества зерен в металле, что приводит к увеличению общей протяженности поверхности зерен, и количество углерода, выделяющегося в виде карбидов, становится значительно меньше.
Феррит содержит больше хрома, чем аустенит, поэтому, несмотря на обеднение хромом при выделении карбидов, в феррите еще остается достаточно хрома, чтобы противостоять межкристаллитной коррозии. Ферритные зерна располагаются внутри аустенитных зерен, а небольшая часть их - по границам,"что препятствует воздействию агрессивной среды на границы зерен аустенита.
Титан и ниобий входят в аустенитные стали для подавления вредного влияния углерода. Эти элементы, обладая большим сродством к углероду, чем хром, образуют карбиды ("TiС, NbС), предотвращая образование и выделение карбидов хрома Сr4С. Необходимое содержание титана и ниобия в стали составляет:
Тi = (5-4-6) С;
Nb = (8 - 10) С,
где С - содержание углерода в аустсшппой стали.
Титан и ниобий являются активными ферритизаторами, и это также будет способстсовать уменьшению склонности к межкристалл итной коррозии.
Для установления микроструктуры металла шва хромопикелевой стали можно пользоваться структурными диаграммами.
В результате длительных исследований удалось установить эффективность действия на структуру сварного шва того или иного элемента по сравнению с действием основных легирующих примесей аустенитных сталей: основного ферритосбразующего элемента хрома и основного аустенптнообразующего элемента никеля. На основании полученных данных и, приняв действие основных элементов"за единицу, построили структурную диаграмму Шеффлера для сварных швов (рис. 3), где по ординате приведен эквивалент никеля, а по абсциссе эквивалент хрома.



Охрупчивание и межкристаллитная коррозия

Высоколегированные аустенитные стали и сплавы наиболее часто используют как коррозионно-стойкие. Основным требованием, которое предъявляется к сварным соединениям, является стойкость к различным видам коррозии. Межкристаллитная коррозия может развиваться как в металле шва, так и в основном металле у линий сплавления (ножевая коррозия) или на некотором удалении от шва. Механизм развития этих видов коррозии одинаков, однако причины возникновения названных видов межкристаллитной коррозии различны.

Межкристаллитная коррозия в металле шва возникает в результате выделения из аустенита под действием термического цикла сварки карбидов хрома, приводящих к обеднению хромом приграничных объемов зерен (рис. 1, а). Основными причинами этого являются повышенное содержание в металле шва углерода и отсутствие или недостаточное содержание титана или ниобия. Стойкость шва против межкристаллитной коррозии уменьшается в результате длительного воздействия нагрева при неблагоприятном термическом цикле сварки или эксплуатации изделия (рис 1, б). Аустенитно-ферритные швы со сплошной структурой и извилистыми очертаниями границ зерен имеют повышенную стойкость против межкристаллитной коррозии по сравнению с аустенитными. Возрастание протяженности границ зерен вследствие измельчения зерен увеличивает площадь поверхности, на которой выделяются карбиды. Выделяющиеся карбиды более дисперсны, и местное обеднение объема зерна хромом происходит на меньшую глубину. Кроме того, процессы диффузии в феррите происходят значительно быстрее, что ускоряет выравнивание концентрации хрома в обедненных приграничных и центральных участках зерен.

Рис. 1. Схемы влияния распределения хрома по телу зерна (а) и продолжительности нагрева (б) на склонность аустенитной стали и сварных швов к межкристаллитной коррозии: 1 – тело аустенитного зерна; 2 – карбиды, выделившиеся по границам зерен; 3 – пограничная область зерна, обедненная хромом; 4 – распределение хрома; 5 – закаленное состояние стали (нет коррозии); 6 – состояние стали после нагрева в критическом интервале температур (есть коррозия)

Межкристаллитная коррозия (МКК) основного металла на некотором расстоянии от шва также вызвана действием термического цикла сварки на ту часть основного металла, которая была нагрета до критических температур. Склонность стали и швов к межкристаллитной коррозии предупреждается:

  • 1) снижением содержания углерода до пределов его растворимости в аустените (до 0,02 – 0,03%);
  • 2) легированием более энергичными, чем хром, карбидообразующими элементами (стабилизация титаном, ниобием, танталом, ванадием и др.);
  • 3) стабилизирующим отжигом при 850 – 900°С в течение 2 – 3 ч или аустенизацией – закалкой с 1050 – 1100°С;
  • 4) созданием аустенитно-ферритной структуры с содержанием феррита до 20 – 25% путем дополнительного легирования хромом, кремнием, молибденом, алюминием и др. Однако такое высокое содержание в структуре феррита может понизить стойкость металла к общей коррозии.

Эти же меры способствуют и предупреждению ножевой коррозии.

Ножевая коррозия поражает основной металл. Этот вид коррозии развивается в сталях, стабилизированных титаном и ниобием на участках, нагретых при сварке до температур выше 1250°С, где карбиды титана и ниобия растворяются в аустените. Повторное тепловое воздействие на этот металл критических температур 500 – 800°С (например, при многослойной сварке) приведет к сохранению титана и ниобия в твердом растворе и выделению карбидов хрома.

Общая коррозия , т. е. растворение металла в коррозионной среде, может развиваться в металле шва, на различных участках или в околошовной зоне в целом и в основном металле. В некоторых случаях наблюдается равномерная общая коррозия основного металла и сварного соединения. Имеется еще один вид коррозионного разрушения – коррозионное растрескивание , возникающее под совместным действием растягивающих напряжений и агрессивной среды. Разрушение развивается как межкристаллитное, так и транскристаллитное. Снижение остаточных сварочных напряжений – одна из основных мер борьбы с этим видом коррозионного разрушения.

К межкристаллитной коррозии склонны нержавеющие стали, алюминиевые и никелевые сплавы. Этот вид коррозии один из наиболее опасных видов местной коррозии, вызывающий избирательное разрушение по границам зерен, в результате происходит потеря пластичности и прочности сплава, т. е. преждевременное разрушение изделий. Причиной склонности сплавов к межкристаллитной коррозии является электрохимическая неоднородность структуры сплава, когда границы зерен или приграничные зоны являются более электрохимически отрицательными по сравнению с зерном. Наиболее обоснованной причиной возникновения межкристаллитной коррозии нержавеющих сталей следует считать обеднение хромом границ зерен вследствие выделения на них фаз, богатых хромом. Это происходит при отпуске закаленных нержавеющих сталей. При отпуске нержавеющих сталей по границам зерен выпадает карбид хрома, в результате чего содержание хрома в твердом растворе в приграничной зоне резко уменьшается. Дальнейший рост карбидов происходит вследствие диффузии углерода и хрома из твердого раствора к границам зерен. При температуре отпуска скорость диффузии углерода намного выше скорости диффузии хрома, поэтому в образовании карбидов участвует почти весь углерод твердого раствора, а хром, находящийся в твердом растворе около границ зерен. В результате этого через некоторый промежуток времени отпуска стали по границам зерен образуется обедненная хромом область, в которой содержание хрома составляет менее 12%, поэтому ее коррозионная стойкость ниже, чем зона зерна, что и определяет склонность аустенитных сталей к межкристаллитной коррозии.

При достаточно большой продолжительности отпуска, по мере уменьшения концентрации углерода, скорость диффузии хрома начинает превышать скорость диффузии углерода, в результате чего содержание хрома в обедненной зоне растет и ее коррозионная стойкость увеличивается.

Таким образом, при отпуске стали при определенной температуре через некоторое время появляются обедненные хромом зоны и сталь приобретает склонность к межкристаллитной коррозии, а при достаточно большой продолжительности отпуска склонность стали к межкристаллитной коррозии снижается.

Температура отпуска играет важную роль в появлении у стали склонности к межкристаллитной коррозии. При низких температурах отпуска скорости диффузии углерода и хрома малы, и поэтому время появления склонности стали к межкристаллитной коррозии велико. С повышением температуры отпуска скорость диффузии углерода из зерен к границам увеличивается, в результате чего время отпуска до появления склонности у стали к межкристаллитной коррозии уменьшается и достигает минимального значения при некоторой температуре. При дальнейшем повышении температуры отпуска скорость диффузии хрома в обедненные зоны увеличивается, что приводит к увеличению времени до появления у стали склонности к межкристаллитной коррозии.



При высоких температурах отпуска происходит коагуляция карбидов хрома, что снижает скорость межкристаллитной коррозии.

На склонность нержавеющих сталей к межкристаллитной коррозии большое влияние оказывает содержание в них углерода. С повышением содержания углерода в стали количество выпадающего по границам зерен карбида хрома увеличивается и склонность ее к межкристаллитной коррозии повышается. Легирование хромоникелевых аустенитных нержавеющих сталей элементами, имеющими большее сродство к углероду, чем хром, и связывающими углерод в устойчивые карбиды, резко понижает их склонность к межкристаллитной коррозии. К таким элементам относятся титан, ниобий, тантал.

Разновидностью межкристаллитной коррозии является ножевая коррозия, возникающая в очень узкой зоне от нескольких сотых до десятых долей миллиметра на границе "сварной шов - основной металл". Это явление также объясняется обеднением границ зерен хромом в результате некоторых режимов нагрева, особенно при сварке. Для предотвращения ножевой коррозии рекомендуется применять низкоуглеродистые стали, оптимальный режим сварки или подвергать сварные соединения стабилизирующему отжигу. Ножевой коррозии могут быть подвержены и нержавеющие стали, содержащие титан и ниобий. Это связано с тем, что в узкой околошовной зоне, нагретой до высоких температур (около 1300°С), карбиды титана, ниобия и хрома переходят в раствор, а при быстром охлаждении, вследствие контакта с не нагретым металлом, не успевают выделиться, в результате чего углерод остается в твердом растворе, и создаются условия выпадения карбидов хрома при нагреве стали при температуре 600 - 700° С.

МЕЖКРИСТАЛЛИТНАЯ КОРРОЗИЯ , преимущественное разрушение поликристаллич. металлич. материала вдоль границ микрокристаллов (зерен). При незначит. общих коррозионных потерях разрушение проникает на большую глубину и сопровождается снижением и материала, что в конечном счете приводит к выходу из строя всей конструкции. Межкристаллитной коррозии подвержены мн. на основе Fe (в т.ч. ферритные, аустенитные, аустенитно-ферритные и др. стали), Ni, Al и др. материалы, имеющие, как правило, неоднородную структуру. Межкристаллитная коррозия-электрохим. процесс, обусловленный тем, что твердый р-р может расслаиваться с образованием по границам зерен фаз, обогащенных к.-л. компонентом материала (т. наз. избыточные фазы), а участки, непосредственно прилегающие к границам зерен, оказываются обедненными этим компонентом (обедненные зоны). Под действием той или иной агрессивной среды происходит избирательное либо самих избыточных фаз, либо соседних с ними обедненных зон.

Наиб. склонность к межкристаллитной коррозии наблюдается в тех случаях, когда избыточные фазы на границах зерен соприкасаются, образуя непрерывные цепочки. Напр., для коррозионностойких сталей основной причиной межкристаллитной коррозии является выделение вдоль границ зерен фаз, обогащенных Сr, гл. обр. на основе Сr. Соседние зоны, обедненные Сr, переходят в пассивное состояние при более положит. значениях потенциала, чем фазы с избытком Сr (см. ). В результате в слабоокислит. средах (т. е. при потенциалах, соответствующих переходу сталей из активного состояния в пассивное) обедненные Сr зоны остаются электрохимически активными и раств. с более высокими скоростями, чем фазы, обогащенные Сr. В сильноокислит. средах (т.е. при потенциалах, соответствующих области перепассивации) развитие межкристаллитной коррозии обусловлено избират. самих избыточных фаз. Оно ускоряется, если в этих фазах имеются легирующие элементы, легко подвергающиеся перепассивации (Mo, W, V), или элементы с низкой коррозионной стойкостью (Мn, Сu). Одной из причин межкристаллитной коррозии пром. материалов м. б. сегрегация по границам зерен технол. примесей; этим объясняется, напр., межкристаллитная коррозия закаленных аустенит-ных коррозионностойких сталей, содержащих примеси Р, Si и др., в сильноокислит. средах.

Склонность к межкристаллитной коррозии при прочих равных условиях (в одной и той же среде, при одинаковом и т.п.) зависит от режимов термич. обработки и обработки , поскольку эти режимы во многом определяют состав и морфологию выделяющихся по границам зерен избыточных фаз, а также состав и кол-во сегреги-рованных там примесных элементов.

Стойкость материала против межкристаллитной коррозии повышают выбором режима термообработки, снижением содержания примесей, элементами, предотвращающими образование нежелательных избыточных фаз по границам зерен.


===
Исп. литература для статьи «МЕЖКРИСТАЛЛИТНАЯ КОРРОЗИЯ» : Колотыркин Я. М., Каспарова О. В., в кн.: Итоги науки и техники, . Коррозия и , т. 6, М., 1978, с. 180-217; Кня-жева В.М., в кн.: Новые достижения в области теории и практики противокоррозионной защиты материалов, М., 1981, с. 49-71; Кеше Г., пер. с нем., М., 1984; Cihal V., Intergranular corrosion of steels and alloys, Amst, 1984 (Materials science monographs, v. 18). О. В. Каспарова.

Страница «МЕЖКРИСТАЛЛИТНАЯ КОРРОЗИЯ» подготовлена по материалам .

Межкристаллитная коррозия характеризуется избирательным разрушением по границам кристаллитов (зерен) металла (рис. 5.91). Этому виду коррозии подвержены нержавеющие стали, особенно аус- тенитного класса, и некоторые цветные сплавы. Межкристаллитная коррозия свойственна хромоникелевым сталям в условиях охлаждения установок после регенерации катализаторов, некоторым элементам оборудования при моноэтаноломиновой очистке газов.
По характеру и механизму повреждения материала к разновидности межкристаллитной коррозии следует отнести и ножевую коррозию - разрушение околошовной зоны, граничащей со сварным швом элементов конструкций из аустенитных хромоникелевых и других высоколегированных сталей. По внешнему виду контуры межкристаллитного разрушения напоминают надрез острым ножом. Ножевая коррозия с большой скоростью распространяется в глубь металла и существенным образом зависит от технологии сварки.

Рис. 5.91. Межкристаллитная коррозия стали 12Х18Н10Т со стороны внутренней поверхности бесшовной трубы 0108x6 мм на удалении (а) и вблизи (б) зоны разрыва трубопровода гидрогенизата установки «Пироконденсат», х 200

Склонность к межкристаллитной коррозии определяется в соответствии с ГОСТ 6032-72.
Химическое и нефтехимическое оборудование из нержавеющих сталей часто подвергается межкристаллитной коррозии. Особенно интенсивно она протекает в элементах оборудования, подвергнутых пластической деформации: эллиптических и сферических днищах, отводах, коленах, сварных соединениях и т.д.
Довольно часто межкристаллитная коррозия в нержавеющих сталях типа Х18Н10 возникает в змеевиках трубчатых печей, используемых для подогрева продуктов каталитического крекинга нефти. Змеевики омываются топочными газами с температурой до 1200°С в радиационной части и до 700°С - в конвекционной. В качестве топлива в печи используются углеводородные газы с содержанием 1,2-4,5% S . В дымовых газах наряду с СО и N0 содержится S03 до 1426 мг/м3.
Анализ причин возникновения межкристаллитной коррозии показывает , что ее появление связано с воздействием сернокислотной среды, возникающей при пуске и остановке печи. Частые перебои в сырье, обусловливая увеличение частоты остановок и пуска печей, способствуют развитию межкристаллитной коррозии. Серный ангидрид, соединяясь с парами воды, образует серную кислоту, оседающую на трубах в виде гигроскопичных сульфатов.
По данным , в сварном соединении змеевика (диаметром 219 мм и толщиной стенки 10 мм) радиационной части печи после 2520 ч эксплуатации обнаружен пропуск среды в печное пространство. В осадке на змеевике содержание S042- достигало 22,12%. После снятия усиления монтажного сварного шва сетка трещин видна по всей поверхности наплавленного металла. При этом раскрытие трещин не превышало 0,3 мм, а длина 1,5-3 мм. Глубина сплошной межкристаллитной коррозии на внутренней поверхности основного металла змеевика конвенционной печи достигала 1,1-1,3 мм.
Межкристаллитная коррозия опасна тем, что при наличии остаточных сварочных напряжений и термических циклов пуска-останова происходит ее перерастание в коррозионное растрескивание под напряжением.
Причину межкристаллитной коррозии аустенитных нержавеющих сталей связывают с образованием зернограничных выделений карбидов, обогащенных хромом. При высоких температурах нержавеющие стали классического состава (18% Сг, 9% Ni) способны растворять большое количество элементов внедрения (С и N). Однако Ниже 900°С растворимость этих элементов резко снижается. При традиционной обработке стали на твердый раствор в ней после закалки

Рис. 5.92. Выделение карбидов хрома Сг23С6 по границам зерен и субзерен в стали 08Х18Н10Т после нагрева при 650°С, 100 ч. ПЭМ х 16000

содержится в пересыщенном твердом растворе значительное количество углерода и азота. В результате последующего термического воз действия при 450-700°С на границе зерен образуются обогащенные хромом выделения М23С6 (рис. 5.92). В этих условиях участки зерен, примыкающие к зернограничным выделениям, оказываются обед- ненными хромом и в определенных водных растворах склонны к рас творению.
В трубах пароперегревателей из аустенитной нержавеющей стали 12Х18Н10Т с температурой пара 570°С в результате перегрева вне шней поверхности происходит перераспределение хрома . В этих участках образуются высокохромистые карбиды с одновременным обеднением хромом приграничного объема зерен менее 12%, вызывая окисление стали. В итоге резко снижается прочность стенки трубы на макроучастке и наступает межзеренное разрушение, начинающееся от поверхности нагрева.
Наиболее опасны температуры 500-550°С, при которых нержа веющая сталь типа Х18Н10Т независимо от химического состава и температуры закалки приобретает склонность к межкристаллитной коррозии (сенсибилизируется). В сенсибилизированной стали в период остановок на аппаратах гидроочистки особенно заметно проявляет ся межкристаллитная коррозия.
В предложена простая схема образования питтинговой ямки (углубления) на стали. Скорость окисления на обнаженной поверхноо ти металла может быть на несколько порядков величины больше, чем на поверхности, покрытой защитной пассивирующей пленкой. При

некоторых условиях содержание кислорода в растворе внутри ямки сильно понижено под действием катодной реакции. Из-за этого увеличение концентрации металлических ионов в растворе не балансируется увеличением концентрации ОН- по реакции
2Н20 + 02 + 4е -» 40Н",
и в растворе сохраняется избыточный положительный заряд.
Особенно интенсивно влияют на склонность к избирательному коррозионному воздействию с образованием питтинга хлоридные ионы. Хлориды металла гидролизуют воду, приводя к уменьшению pH раствора:
М"С1- + н2о - М ОН- + Н+ + С1".
Пониженное pH и повышенная активность хлоридного иона в растворе внутри углубления (ямки) вызывают дальнейший рост скорости окисления металла. Этот рост вызывает дальнейшее усиление притока хлоридных ионов внутрь ямки, и процесс становится автока- талитичеким.
Периодическими обследованиями с применением УЗ-контро- ля установлено , что в четырех сварных емкостях объемом 40 м3 из стали Х18Н9 для хранения соединений азотной кислоты наибольшая степень межкристаллитной коррозии выявляется в стыках продольных и кольцевых швов. Эта коррозия развивается только в зоне контакта металла с парогазовой фазой рабочего продукта. Ножевая и язвенная коррозии существуют в металле, контактирующем как с паровой, так и с жидкими фазами рабочего продукта. При этом наиболее сильный прирост эксплуатационных дефектов наблюдается у емкостей в условиях жаркого климата (рис. 5.93, а). Глубина дефектов возрастает монотонно с практически постоянной скоростью (8-9) 10 5 м/год для емкостей в умеренном климате и (24-35) 10"5 м/год в емкостях, эксплуатировавшихся в зоне жаркого климата (рис. 5.93, б).
Для явления коррозионного растрескивания нержавеющих сталей под напряжением в хлоридсодержащей среде характерно развитие разрушения по механизму хрупкого транскристаллитного скола. Такая картина разрушения отмечена при изучении стали 12Х18Н10Т после испытания на коррозионное растрескивание в кипящем 30% -ном водном растворе MgCl2. При снижении уровня растягивающих напряжений с 0,7 до 0,2 о0 2 в изломе значительно возрастает доля фасеток хрупкого транскристаллитного скола с сеткой вторичных трещин. Фасетки скола имеют характерный для металлов с ОЦК решеткой ручьистый узор.

Рис. 5.93. Изменение средних скорости межкристаллитной коррозии (а) и глубины дефектов (б) в емкостях, эксплуатировавшихся в зонах жаркого (о) и умеренного ( ) климата

Отличительной особенностью ручьистого узора в металле с ГЦК решеткой является изменение направлений ступенек скола не только на границе зерен, но и во внутренних объемах зерен. На поверхности фасеток возникают зигзаги - уступы ручьистого узора. Это изменение направления ручьистого узора обусловлено пересечением плоскости разрушения малоугловых и двойниковых границ.