Для канализации        07.12.2023   

Учебная тема: Виды графов. Граф (теория графов) Что такое графы в информатике

ГРАФЫ

Графы возникли в восемнадцатом столетии, когда известный мате­матик, Леонард Эйлер, пытался решить теперь уже классическую задачу о Кенигсбергских мостах. В то время в городе Кенигсбер­ге было два oстровa, соединенных семью мостами с берегами реки Преголь и друг с другом так, как показано на рис. 7.1. 3адача со­стоит в следующем: осуществить прогулку по городу таким образом, чтобы, пройдя ровно по одному разу по каждому мосту, вернуться в то же место, откуда начиналась прогулка. Решая эту задачу, Эйлер изобразил Кенигсберг в виде графа, отождествив его вершины с частями города, а ребра - с мостами, которыми связаны эти части. Как мы покажем в § 7.1, Эйлеру удалось доказать, что искомого маршрута обхода города не существует.

Рисунок 7.1. Схема старого Кенигсберга

В этой главе мы вводим стандартную терминологию, используемую в теории графов, и разбираем несколько конкретных задач решаемых с помощью графов. В частности, мы познакомимся с классом графов, называемых деревьями. Деревья – естественная модель, представляющая данные, организованные в иерархичную систему. Поиск по дереву для выделения отдельных предметов и сортировка данных в дереве представляет собой важные точки приложения усилий в информатике. В приложении к этой главе мы займемся сортировкой и поиском данных, организованных в деревья.

Графы и терминология

На рис. 7.1 изображены семь мостов Кенигсберга так. как они были расположены в восемнадцатом столетии. В задаче, к которой oбpa­тился Эйлер, спрашивается: можно ли найти маршрут прогулки, ко­торый проходит ровно один раз по каждому из мостов и начинается и заканчивается в одном и том же месте города?

Модель задачи - это граф, состоящий из множества вершин и множества ребер, соединяющих вершины. Вершины А, В, С и D символизируют берега реки и острова, а ребра а,в , c ,d, f и g обозначают семь мостов (см. рис. 7.2). Искомый маршрут (если он существует) соответствует обходу ребер графа таким образом, что каждое из них проходится только один раз. Проход ребра, очевидно, соответствует пересечению реки по мосту.

Рисунок 7.2. Модель задачи о мостах Кенигсберга

Граф, в котором найдется маршрут, найдется маршрут, на­чинающийся и заканчивающийся в одной вершине, и проходящий по всем ребрам графа ровно один раз, называется зйлеровым графом. Последовательность вер­шин (может быть и с повторениями), через которые проходит иско­мый маршрут, как и сам маршрут, называется эйлеровым циклом . Эйлер заметил, что если в графе есть эйлеров цикл, то для каждого ребра, ведущего в какую-то вершину, должно найтись другое ребро, выходящее из этой вершины 1 , и получил из этого простого наблюдсния такой вывод: если в данном графе существует эйлеров цикл, то к каждой вершине должно подходить четное число ребер.

Кроме того, Эйлеру удалось доказать и противоположное утвер­ждение, так что граф, в котором любая пара вершин связана не­которой последовательностью ребер, является Эйлеровым тогда и только тогда, когда все его вершины имеют четную степень. Степенью вершины v называется число δ(v) ребер, ей инцидентных 2 .

Теперь совершенно очевидно, что в графе, моделирующем задачу о мостах Кенигсберга, эйлерова цикла найти нельзя. Действитель­но, степени всех его вершин нечетны: δ(B ) = δ(С) = δ(D) = 3 и δ(A ) = 5. С легкой руки Эйлера графы, подобные тому, который мы исследовали при решении задачи о мостах, стали использовать­ при решении многих практических задач, а их изучение выросло в значительную область математики.

Простой граф определяется как пара G = (V, Е), где V - ко­нечное множество вершин, а Е - конечное множество ребер, при­чем не может содержать петель (ребер, начинающихся и закан­чивающихся в одной вершине) и кратных ребер (кратными назы­ваются несколько ребер, соединяющих одну и ту же пару вершин). Граф, изображенный на рис. 7.2. не является простым, поскольку, например, вершины А и В соединяются двумя ребрами (как раз эти ребра и называются кратными).

Две вершины u и v в простом графе называются смежными , если они соединяются каким-то ребром е , про которое говорят, что оно инцидентно вершине u (и v). Таким образом, мы можем предста­влять себе множество Е ребер как множество пар смежных вершин, определяя тем самым нерефлексивное, симметричное отношение на множестве V. Отсутствие рефлексивности связано с тем, что в простом графе нет петель, т. е. ребер, оба конца которых находятся в одной вершине. Симметричность же отношения вытекает из того факта, что ребро е , соединяющее вершину и с v, соединяет и v с и (иначе говоря, ребра не ориентированы, т. е. не имеют направления). Единственное ребро простого графа, соединяющее пару вершин u и v, мы будем обозначать как иv (или vи).

Логическая матрица отношения на множестве вершин графа, котopoe задается его ребрами, называется ,матрицей смежности. Симметричность отношения в терминах матрицы смежности М озна­чает, что М симметрична относительно главной диагонали. А из-за нерефлексивности этого отношения на главной диагонали матрицы М стоит символ «Л».

Пример 7.1. Нарисуйте граф G(V, Е) с множеством вершин V = {а, Ь, с, d, е} и множеством ребер E = {ab, ae, bc, bd, ce, de}. Выпишите его матрицу смежности.

Решение. Граф G показан на рис. 7.3.

Рисунок 7.3.

Его матрица смежности имеет вид:

Для восстановления графа нам достаточно только тех элементов матрицы смежности, которые стоят над главной диагональю.

Подграфом графа G = (V, E) называется граф G’ = (V’, E’), в котором E’ C E и V’ C V.

Пример 7.2 Найдите среди графиков H, K и L, изображенных на рис. 7.4, подграфы графа G.

Решение. Обозначим вершины графов G, H и K как показано на рис. 7.5. Графы H и K – подграфы в G, как видно из наших обозначений. Граф L не является подграфом в G, поскольку у него есть вершина индекса 4, а у графа G такой нет.

Маршрутом длины k в графе G называется такая последовательность вершин v 0 , v 1 , …, v k , что для каждого i = 1, …, k пара v i – 1 v i образует ребро графа. Мы будем обозначать такой маршрут через v 0 v 1 v k . Например 1 4 3 2 5 – это маршрут длины 4 в графе G из примера 7.2.

G H

K L

Рисунок 7.4.

Циклом в графе принято называть последовательность вершин v 0 , v 1 , … , v k , каждая пара которых является концами одного ребра, причем v 0 = v 1 , а остальные вершины (и ребра) не повторяются. Иными словами, цикл – это замкнутый маршрут, проходящий через каждую свою вершину и ребро только один раз

1 2 1 2 3

Рисунок 7.5

Пример 7.3. Найдите циклы в графе G из примера 7.2.

Решение. В этом графе есть два разных цикла длины 5:

1 3 2 5 4 1 и 1 2 5 4 3 1

Мы можем пройти эти циклы как в одном направлении так и в другом, начиная с произвольной вершины цикла. Кроме того, в графе есть три разных цикла длины 4:

1 2 5 4 1, 1 2 3 4 1 и 2 5 4 3 2,

и два цикла длины 3:

1 2 3 1 и 1 3 4 1.

Граф, в котором нет циклов, называется ацикличным. Структуры деревьев, которые возникают в вычислениях, представляют собой частный случай ацикличных графов. Позже в этой главе мы ими займемся.

Граф, называют связным, если любую пару его вершин соединяет какой – нибудь маршрут. Любой общий граф можно разбить на подграфы, каждый из которых окажется связным. Минимальное число таких связных компонент называется числом связности графа и обозначается через c (G ) . Вопросы связности имеют важное значение в приложениях теории графов к компьютерным сетям. Следующий алгоритм применяется для определения числа связности графа.

Алгоритм связности.

Пусть G = (V, E) – граф. Алгоритм предназначен для вычисления значения c = c (G ), т.е. числа компонент связности данного графа G.

V’ :=V;

while V’≠ ø do

Выбрать y Є V

Найти вершины, соединяющие маршрутом с у;

Удалить вершину у из V ’ и

соответствующие ребра из Е;

c := c +1;

Пример 7.4. Проследите за работой алгоритма связности на графе, изображенном на рис. 7.6.

Рисунок 7.6.

Решение. Смотри табл. 7.1.

Таблица 7.1.

Исходные значения

{1,2,3,4,5,6,7,8}

Выбор у = 1

Выбор у = 2

Выбор у = 7

Итак, c (G ) = 3. Соответствующие компоненты связности приведены на рис. 7.7.

5

Вы, вероятно, имеете представление о компьютерных сетях. Возможно, компьютеры в школьном кабинете информатики объединены в локальную сеть или вы работали в Интернете, или пользовались услугами электронной почты. Понятно, что сеть образуется только тогда, когда компьютеры каким-либо образом соединены между собой каналами передачи данных. Размещение абонентов сети (подключённых к ней компьютеров или других систем автоматической обработки данных) и способ их соединения друг с другом называется конфигурацией сети. Продемонстрировать различные типы конфигураций вычислительных сетей можно, например, с помощью таких информационных моделей, как графы. Граф -- совокупность точек, соединённых между собой линиями. Точки называют вершинами графа. Они могут изображаться точками, кружочками, прямоугольниками и пр. Линии, соединяющие вершины, называются дугами (если задано направление от одной вершины к другой) или рёбрами (если направленность двусторонняя, то есть направления равноправны). Две вершины, соединенные ребром (дугой) называются смежными. Вершины и рёбра графа могут характеризоваться некоторыми числовыми величинами. Например, может быть известна длина ребра или «стоимость прохождения» по нему. Такие характеристики называют весом, а граф называется взвешенным.

Граф однозначно задан, если заданы множество его вершин, множество рёбер (дуг) и указано, какие вершины какими рёбрами (дугами) соединены и, возможно, указаны веса вершин и рёбер (дуг). Определение всех этих элементов и составляет суть формализации в этом случае.

Пример

На рис.3 представлены различные типы конфигураций локальных вычислительных сетей (ЛВС), являющиеся информационными моделями структур ЛВС, представленными в виде графов:

* шинная конфигурация, когда к незамкнутому каналу с некоторыми интервалами подключаются отдельные абоненты (К) информация от абонента-источника распространяется по каналу в обе стороны;

* кольцевая конфигурация, когда каждый абонент непосредственно связан с двумя соседними абонентами, а информация передаётся по замкнутому кольцу, чаще всего в одну сторону;

* звездообразная конфигурация, в центре которой находится центральный коммутатор (ЦК), который последовательно опрашивает абонентов и предоставляет им право на обмен данными;

* древовидная конфигурация образуется подсоединением нескольких простых каналов связи к одному магистральному;

* полносвязная конфигурация обеспечивает выбор наиболее быстрого маршрута связи между абонентами и удобна там, где управление оказывается достаточно сложным.

Рис.3

Наиболее наглядно граф задаётся рисунком. Однако не все детали рисунка одинаково важны. В частности, несущественны геометрические свойства рёбер (длина, кривизна и так далее), форма вершин (точка, кружок, квадрат, овал и пр.) и взаимное расположение вершин на плоскости. Так, на рис.4 представлены два изображения одного и того же графа. Все вершины и ребра часто задаётся в виде сопровождающей надписи на вершине или линии, но, введя условные обозначения, их можно задать формой или цветом вершины, толщиной, типом или цветом линии и т. п.

Рис. 4

Информационную модель в форме графа можно использовать для наглядного представления взаимосвязей, существующих между элементами объекта моделирования. Таким образом, граф -- наиболее удобная форма для моделирования структуры объекта, хотя в такой форме можно моделировать и внешний вид, и поведение объекта.

Пример

На рис.5 представлены модели молекул бутана и изобутана, каждая из которых имеет формулу С4Н10, то есть состоит из 4 атомов углерода и 10 атомов водорода. Имея одну и ту же формулу, бутан и изобутан имеют различные химические свойства, так как способы соединения атомов (структура молекул) различны. Расположение атомов в молекуле при различных способах их соединения хорошо представимо графом.

Рис.5

Заметим, что в химии для обозначения таких веществ часто используются и структурные формулы. Порядок соединения атомов изображается в структурной формуле чёрточками (связь между водородом и остальными атомами обычно не указывается). Подумайте сами, можно ли считать структурную формулу одной из разновидностей графа. В форме графа удобно отображать взаимосвязи понятий, относящихся к одной области деятельности или познания.

Пример

Рассмотрите граф понятий темы «Четырёхугольники» из курса геометрии (рис.6). Не правда ли, хорошая «шпаргалка»?

Рис.6.

В практической деятельности модели в форме графов часто используются для представления видов и порядка выполнения работ. Возможно, вам знакомы такие термины, как «сетевой график работ», «сетевой график строительства». Часто наряду со словесным или табличным описанием сетевые графики сопровождаются и изображением в виде графа, вершинами которого являются конкретные виды работ, а дугами задаётся возможный порядок их выполнения.

Пример

Сетевые графики строительства хорошо демонстрируют, какие работы могут выполняться одновременно, а какие требуют обязательного завершения предыдущих этапов. Анализируя такие графы, можно рассчитать время, необходимое для завершения всей работы, спланировать, сколько, когда и на какие работы направить специалистов и технику, определить наиболее «узкие» участки и уделить им особое внимание.

Для машинной обработки более удобным является символическое представление графов в виде списка рёбер с указанием, какие вершины это ребро соединяет, а также табличное представление, где строки и столбцы -- названия вершин, а значения ячеек указывают на то, соединены данные вершины или нет.

Пример

Графы, представленные на рис.7 могут быть описаны, например, следующими способами. Символическая запись: а(1,2) b(l,4) c(2,4) d(3,5) e(4,5) ,(3,4)

Табличная запись:

Рис.7.

Представление данных в форме дерева

Особым видом графа является дерево. Данная форма модели применяется тогда, когда элементы моделируемого объекта находятся в состоянии какого-либо подчинения и соподчинения, когда есть отношение иерархичности.

Пример

Модель управления предприятием (школой, театральным коллективом и т. д.) очень удобно представлять в виде дерева.

Пример

Вам хорошо известно понятие «родословное дерево» и вы можете изобразить в такой форме ваши родственные отношения.

Пример

Каталог файлов на диске, также как и библиотечный каталог -- примеры информационных моделей в форме дерева. Дерево -- это граф, предназначенный для отображения таких связей между объектами, как вложенность, подчиненность, наследование и т. п.

Строится он следующим образом

Сначала рисуем «главную» вершину, которая не зависит ни от одной другой вершины. Эта вершина называется корнем дерева и является единственной вершиной 1-го уровня. Далее добавляем вершины 2-го уровня. Их может быть сколько угодно, и все они обязательно связаны с корнем -- вершиной 1-го уровня, но не связаны между собой. На следующем шаге добавим вершины 3-го уровня. Каждая из них будет связана ровно с одной вершиной 2-го уровня (больше ни с одной другой вершиной). К любой вершине 2-го уровня может быть подсоединено сколько угодно вершин 3-го уровня (в том числе, ни одной). Следующий шаг -- добавка вершин 4-го уровня, каждая из которых будет связана ровно с одной вершиной 3-го уровня (и не связана больше ни с чем). И так далее. На каждом шаге добавляем вершины очередного уровня, каждая из которых будет связана ровно с одной вершиной предыдущего уровня и не будет иметь никаких иных связей. Полученный граф напоминает ветвящийся куст, который «растет сверху вниз»: верхние уровни имеют меньшие номера, нижние -- большие. Вообще говоря, дерево может быть и неориентированным графом, но чаще дерево ориентировано, причем дуги направлены от верхних вершин к нижним. Верхняя вершина называется предком для связанных с ней нижних вершин, а нижние вершины -- потомками соответствующей верхней вершины. На любом дереве существует единственная вершина, не имеющая предка, -- корень -- и может быть сколько угодно вершин, не имеющих потомков, -- листьев. Все остальные вершины имеют ровно одного предка и сколько угодно потомков. Если не принимать во внимание направленность связей, то в дереве из любой вершины можно по линиям дойти до любой другой вершины, причем по одному единственному пути. В виде дерева удобно изображать системы, в которых нижние вершины в каком-то смысле «подчинены» верхним. Верхняя вершина может изображать начальника, нижние -- подчиненных; верхняя -- систему, нижние -- ее компоненты; верхняя -- множество объектов, нижние -- входящие в него подмножества; верхняя вершина -- предка, нижние -- потомков и т. д. Формализация в случае построения дерева (иерархического графа) сводится к выявлению основного (главного, центрального) элемента рассматриваемого объекта (вершина нулевого уровня, которую часто называют корнем), элементов, которые находятся в непосредственном подчинении от основного (вершины 1-го уровня). Затем определяются вершины, находящиеся в непосредственном «подчинении» от вершин 1-го уровня (вершины 2-го уровня) и так далее. Изображать построенное дерево отношений можно в любом направлении -- это уже дело эстетического вкуса разработчика модели. В научной и учебной деятельности с помощью деревьев часто представляют классификацию изучаемых объектов.

Классифицирование -- распределение объектов по классам в зависимости от их общих признаков, фиксирующее закономерные связи между классами объектов в единой системе данной отрасли знания.

Классификация (от лат. classis -- разряд + facere -- делать) -- система соподчиненных понятий (классов объектов, явлений) в какой-либо отрасли знания, составленная на основе учёта общих признаков объектов и закономерных связей между ними.

Классификация позволяет ориентироваться в многообразии объектов и является источником знания о них. Очень важен выбор основания классификации -- то есть признака, на основании которого объекты разбиваются на классы. Выбор разных оснований приводит к разным классификациям.

Пример

На рис.8 вы видите классификацию, предложенную Григорием Великим, которая призвана была показать, что человек имеет что-то общее со всеми видами существующих в мире вещей, и поэтому его справедливо называют «вселенной в миниатюре». Обратите внимание, что объекты здесь разбиваются всегда на два класса. Такая классификация носит название дихотомической.

Рис.8.

Пример

Представленная на рис.9 классификация принтеров построена с использованием различных оснований деления

Рис.9

Пример

Важным видом исторических классификаций является построение родословных или генеалогических деревьев. Они бывают самого разного вида: с указанием только прямых потомков (рис.10); с включением жён (мужей) и их родственников и др.

Рис.10 Родословное дерево великих и удельных князей Владимирских и Московских, XIII--XIV века (фрагмент)

В скобках приведены известные даты жизни; крест указывает на год смерти; двойным контуром обведены имена князей, занимавших московский престол. Рассмотренные выше реляционная (табличная), сетевая (графовая) и иерархическая (древовидная) модели являются основными для представления данных в базах данных, а программные комплексы, которые позволяют создавать, обновлять, сохранять базы данных и обслуживать запросы пользователей к ним, называются соответственно реляционной, сетевой, иерархической системами управления базами данных (СУБД). При описании сложных объектов, как правило, используется комбинация различных моделей данных.

Вполне несвязные графы . Граф, у которого множество ребер пусто, называется вполне несвязным (или пустым) графом. Будем обозначать вполне несвязный граф с п вершинами через N n ; N 4 показан на рис. 1. Заметим, что у вполне несвязного графа все вершины изолированы. Вполне несвязные графы не представляют особого интереса.

Полные графы . Простой граф, в котором любые две вершины смежны, называется полным графом. Полный граф с n вершинами обычно обозначается через. Графы и изображены на рис. 2 и 3. имеет ровно n (n - 1)/2 ребер.


Регулярные графы . Граф, у которого все вершины имеют одну и ту же степень, называется регулярным графом. Если степень каждой вершины равна r, то граф называется регулярным степени r. Регулярные графы степени 3, называемые также кубическими (или трехвалентными) графами (см., например, рис. 2 и 4). Другим известным примером кубического графа является так называемый граф Петерсена, показанный на рис. 5. Отметим, что каждый вполне несвязный граф является регулярным степени 0, а каждый полный граф К n - регулярным степени n - 1.

Платоновы графы . Среди регулярных графов особенно интересны так называемые Платоновы графы - графы образованные вершинами и ребрами пяти правильных многогранников - платоновых тел: тетраэдра, куба, октаэдра, додекаэдра и икосаэдра. Граф соответствует тетраэдру (рис. 2); графы, соответствующие кубу и октаэдру, показаны на рис. 5 и 6;

Двудольные графы . Допустим, что множество вершин графа можно разбить на два непересекающихся подмножества V 1 и V 2 так, что каждое ребро в G соединяет какую-нибудь вершину из V 1 с какой-либо вершиной из V 2 (рис. 7);

тогда G называется двудольным графом. Такие графы иногда обозначают G(V 1, V 2), если хотят выделить два указанных подмножества. Двудольный граф можно определить и по-другому - в терминах раскраски его вершин двумя цветами, скажем красным и синим. При этом граф называется двудольным, если каждую его вершину можно окрасить красным или синим цветом так, чтобы любое ребро имело один конец красный, а другой - синий. Следует подчеркнуть, что в двудольном графе совсем не обязательно каждая вершина из V 1 соединена с каждой вершиной из V 2 ; если же это так и если при этом граф G простой, то он называется полным двудольным графом и обычно обозначается где m, n - число вершин соответственно в V 1 и V 2 . Например, на рис. 8 изображен граф K 4 , 3 . Заметим, что граф имеет ровно m + n вершин и mn ребер. Полный двудольный граф вида называется звездным графом; на рис. 9 изображен звездный граф.

Связные графы . Граф связный, если его нельзя представить в виде объединения двух графов, и несвязный в противном случае. Очевидно, что всякий несвязный граф G можно представить в виде объединения конечного числа связных графов - каждый из таких связных графов называется компонентой (связности) графа G. (На рис. 10 изображен граф с тремя компонентами.) Доказательство некоторых утверждений для произвольных графов часто бывает удобно сначала провести для связных графов, а затем применить их к каждой компоненте в отдельности.

Математика оперирует не содержанием вещей, а их структурой, абстрагируя ее из всего того, что дано как целое. Отвлечение от качеств и свойств предмета позволяет выявить у данного предмета его основу, неотъемлемую часть, то, что поставит его в один ряд с непохожими на него, на первый взгляд, предметами. Теория графов – это раздел математики, поэтому и в ней используется принцип отвлечения: не важно, что представляет собой предмет, важно лишь то, является ли он графом, т. е. обладает ли обязательными для графов свойствами.

Прежде чем перейти к изучению способов представления графа, рассмотрим примеры, дадим определение графу и ознакомимся с основными понятиями теории графов. Здесь не будут рассмотрены все аспекты теории графов (этого и не требуется), но, по большой части, те, что понадобятся нам в дальнейшем.

В своей жизни мы, так или иначе, соприкасались с объектами, имеющими структуру графа. К таким объектам относятся разного рода маршруты общественного транспорта: система метрополитена, автобусные маршруту и т.п. В частности, программисту знакома компьютерная сеть, также являющаяся графом (рис. 3.1). Общее здесь это наличие точек, соединенных линиями. Так в компьютерной сети точками являются отдельные серверы, а линиями – различные виды электрических сигналов. В метрополитене первое – станции, второе – туннели, проложенные между ними. В теории графов точки именуется вершинами, или узлами , а линии – ребрами, или дугами . Таким образом, граф – это совокупность вершин, соединённых ребрами.

Вернемся к компьютерной сети. Она обладает определенной топологией, и может быть условно изображена в виде некоторого числа компьютеров и путей их соединяющих. На рисунке ниже в качестве примера показана полносвязная топология .

Рисунок 3.1 – Компьютерная сеть

Это, по сути, граф. Пять компьютеров являются вершинами, а соединения (пути передачи сигналов) между ними – ребрами. Заменив компьютеры вершинами, мы получим математический объект – граф, который имеет 10 ребер и 5 вершин. Пронумеровать вершины можно произвольным образом, а не обязательно так, как это сделано на рисунке.

Вот некоторые важные обозначения, используемые в теории графов:

· G =(V , E ), здесь G – граф, V – его вершины, а E – ребра;

· |V | – порядок (число вершин);

· |E | – размер графа (число рёбер).

В нашем случае (рис. 1) |V |=5, |E |=10;

Когда из любой вершины доступна любая другая вершина, то такой граф называется неориентированным связным графом (рис. 3.1). Если же граф связный, но это условие не выполняется, тогда такой граф называется ориентированным или орграфом (рис. 3.2). Ребра орграфа принято называть дугами .


В ориентированных и неориентированных графах имеется понятие степени вершины . Степень вершины – это количество ребер, соединяющих ее с другими вершинами. Степень входа вершины – количество входящих в эту вершину ребер, степень выхода – количество исходящих ребер. Сумма всех степеней графа равна удвоенному количеству всех его ребер. Для рисунка 2 сумма всех степеней равна 20.

Рисунок 3.2 – Ориентированный граф

В орграфе, в отличие от неориентированного графа, имеется возможность двигаться из вершины h в вершину s без промежуточных вершин, лишь тогда когда дуга выходит из h и входит в s , но не наоборот.

Ориентированные графы имеют следующую форму записи:

G =(V , A ), где V – вершины, A – направленные ребра.

Третий тип графов – смешанные графы (рис. 3.3). Они имеют как направленные ребра, так и ненаправленные. Формально смешанный граф записывается так: G =(V , E , A ), где каждая из букв в скобках обозначает тоже, что ей приписывалось ранее.

Рисунок 3.3 – Смешанный граф

На рисунке 3 изображен смешанный граф. Одни дуги направленные [(e , a ), (e , c ), (a , b ), (c , a ), (d , b )], другие – ненаправленные [(e , d ), (e , b ), (d , c )…].

Когда у ребра оба конца совпадают, т. е. ребро выходит из некоторой вершины F и входит в нее, то такое ребро называется петлей (рис. 3.4).

Рисунок 3.4 – Петли графа

Два или более графов на первый взгляд могут показаться разными по своей структуре, что возникает вследствие различного их изображения. Но это не всегда так. Возьмем два графа (рис. 3.5). Они эквивалентны друг другу, ведь не изменяя структуру одного графа можно построить другой. Такие графы называются изоморфными , т. е. обладающими тем свойством, что какая-либо вершина с определенным числом ребер в одном графе имеет тождественную вершину в другом.


Рисунок 3.5 – Изоморфные графы

Когда каждому ребру графа поставлено в соответствие некоторое значение, называемое весом ребра , тогда такой граф взвешенный. В разных задачах в качестве веса могут выступать различные виды измерений, например длины, цены маршруты и т. п. В графическом представлении графа весовые значения указываются, как правило, рядом с ребрами.

В любом из рассмотренных нами графов имеется возможность выделить путь и, причем не один. Путь – это последовательность вершин, каждая из которых соединена с соседней вершиной посредством ребра. Если первая и последняя вершины совпадают, то такой путь называется циклом . Длина пути определяется количеством составляющих его ребер. Например, на рисунке 4.а путем служит последовательность [(e ), (a ), (b ), (c )]. Этот путь является подграфом, так как к нему применимо определение последнего, а именно: граф G’ =(V’ , E’ ) является подграфом графа G =(V , E ), только тогда когда V’ и E’ принадлежат V , E .

Граф, как и большинство других математических объектов, может быть представлен на компьютере (сохранен в его памяти). Существуют несколько способов его интерпретации, вот наиболее известные из них:

· матрица смежности;

· матрица инцидентности;

· список смежности;

· список ребер.

Использование двух первых методов предполагает хранение графа в виде двумерного массива (матрицы). Причем размеры этих массивов, зависят от количества вершин и/или ребер в конкретном графе. Так размер матрицы смежности n ×n , где n – число вершин, а матрицы инцидентности n ×m , n – число вершин, m – число ребер в графе.

Виды графов могут определяться общими принципами их построения (таковы, например, двудольный граф и эйлеров граф), а могут зависеть от тех или иных свойств вершин или рёбер (например, ориентированный и неориентированный граф, обыкновенный граф).

Ориентированные и неориентированные графы

звеньями (порядок двух концов ребра графа не существенен), называются неориентированными .

Графы, в которых все рёбра являются дугами (порядок двух концов ребра графа существенен), называются ориентированными графами или орграфами .

Неориентированный граф может быть представлен в виде ориентированного графа , если каждое его звено заменить на две дуги, имеющие противоположные направления.

Графы с петлями, смешанные графы, пустые графы, мультиграфы, обыкновенные графы, полные графы

Если граф содержит петли , то это обстоятельство специально оговаривают, добавляя к основной харатеристике графа слова "с петлями", например, "орграф с петлями". Если граф не содержит петель, то добавляют слова "без петель".

Смешанным называют граф, в котором имеются рёбра хотя бы двух из упомянутых трёх разновидностей (звенья, дуги, петли).

Граф, состоящий только из голых вершин , называется пустым .

Мультиграфом называется граф, в котором пары вершин могут быть соединены более чем одним ребром, то есть содершащий кратные рёбра , но не содержащий петель.

Граф без дуг (то есть неориентированный), без петель и кратных рёбер называется обыкновенным . Обыкновенный граф изображён на рисунке ниже.

Граф заданного типа называют полным , если он содержит все возможные для этого типа рёбра (при неизменном множестве вершин). Так, в полном обыкновенном графе каждая пара различных вершин соединена ровно одним звеном (рисунок ниже).

Двудольный граф

Граф называется двудольным , если множество его вершин можно разбить на два подмножества так, чтобы никакое ребро не соединяло вершины одного и того же подмножества.

Пример 1. Построить полный двудольный граф.

Полный двудольный граф состоит из двух множеств вершин и из всевозможных звеньев, соединяющих вершины одного множества с вершинами другого множества (рисунок ниже).

Эйлеров граф

Мы уже касались задачи о кёнигсбергских мостах . Отрицательное решение Эйлером этой задачи привело к первой опубликованной работе по теории графов. Задачу об обходе мостов можно обобщить и получить следующую задачу теории графов: можно ли найти в данной графе цикл, содержащий все вершины и все рёбра? Граф, в котором это возможно, называется эйлеровым графом.

Итак, эйлеровым графом называется граф, в котором можно обойти все вершины и при этом пройти одно ребро только один раз. В нём каждая вершина должна иметь только чётное число рёбер.

Пример 2. Является ли полный граф с одинаковым числом n рёбер, которым инцидентна каждая вершина, эйлеровым графом? Объяснить ответ. Привести примеры.

Ответ. Если n - нечётное число, то каждая вершина инцидентна n -1 рёбрам. В таком случае данный граф является эйлеровым графом. Примеры таких графов на рисунке ниже.

Регулярный граф

Регулярным графом называется связный граф, все вершины которого имеют одинаковую степень k . Таким образом, на рисунке к примеру 2 изображены примеры регулярных графов, называемых по степени его вершин 4-регулярными и 2-регулярными графами или регулярными графами 4-й степени и 2-й степени.

Число вершин регулярного графа k -й степени не может быть меньше k +1. У регулярного графа нечётной степени может быть лишь чётное число вершин.

Пример 3. Построить регулярный граф, в котором самый короткий цикл имеет длину 4.

Решение. Рассуждаем так: для того, чтобы длина цикла удовлетворяла заданному условию, требуется, чтобы число вершин графа было кратно четырём. Если число вершин равно четырём, то получится граф, изображённый на рисунке ниже. Он является регулярным, но в нём самый короткий цикл имеет длину 3.

Увеличиваем число вершин до восьми (следующее число, кратное четырём). Соединяем вершины рёбрами так, чтобы степени вершин были равны трём. Получаем следующий граф, удовлетворяющий условиям задачи.

Гамильтонов граф

Гамильтоновым графом называется граф, содержащий гамильтонов цикл. Гамильтоновым циклом называется простой цикл, проходящий через все вершины рассматриваемого графа. Таким образом, говоря проще, гамильтонов граф - это такой граф, в котором можно обойти все вершины и каждая вершина при обходе повторяется лишь один раз. Пример гамильтонова графа - на рисунке ниже.

Пример 4. Задан двудольный граф, в котором n - число вершин из множества A , а m - число вершин из множества B . В каком случае граф будет эйлеровым графом, а в каком случае - гамильтоновым графом?