Для вентиляции        27.09.2018   

Тепловая изоляция воздуховодов на улице. Утеплитель для вентиляции и воздуховодов

В зданиях имеющих большую площадь и сложную планировку вентиляция и кондиционирование – это одна из основных систем жизнеобеспечения. Однако разница в температуре воздуха, который находится в воздуховодах, и в помещении делает очень сложной возможность установки оптимального температурного и влажностного режима.

Вытяжные воздуховоды, которые отводят излишки тепла, значительно нагревают помещение, а приточная вентиляция, по которой поступает холодный воздух, является источником конденсата, поднимающего влажность. Таким образом, температурно-влажностные показатели весьма далеки от рекомендованных нормативными документами.

Для решения этих проблем и производится теплоизоляция воздуховодов. Стандартный изоляционный материал, использующийся для обработки, должен выполнять функции теплоизоляции, звукоизоляции и огнезащиты, кроме того нельзя допустить конденсацию влаги, ни в средине, ни на внешней оболочке..

Разновидности изоляционных материалов

Наиболее популярные изоляционные материалы, которые предлагает рынок, можно условно разделить на несколько категорий в зависимости от области применения и технических условий которые им выдвигаются.

Расчет теплоизоляции

Для того чтобы предотвратить конденсацию влаги на поверхности короба его необходимо теплоизолировать. Расчет толщины теплоизоляции воздуховодов можно произвести, зная следующие показатели:

  • предполагаемую разницу тампературы внутри воздуховода и в помещении через которое он проходит;
  • точку росы;
  • теплопроводность изоляционного материала;
  • размеры воздуховода.

Формула для расчета зависит от диаметра воздуховода:

Для систем с диаметром трубы более 2 м формула следующая:

Для воздуховодов, диаметр которых менее 2 м, формула расчета следующая:

λ из - коэффициент теплопроводности изоляционного материала;
α н - коэффициент теплоотдачи от поверхности термоизолирующего изделия;
t в - температура воздуха внутри воздуховода;
t о - температура в помещении;
t п - температура на поверхности термоизолирующего материала;
d из - толщина изоляции, δ из - толщина изоляции.
d тр - диаметр трубы.

Толщина теплоизоляции прямо пропорциональна показателю его теплопроводности и обратно пропорциональна показателю теплоотдачи поверхности.

Таким образом, можно сделать вывод, что использование нефольгированной теплоизоляции более эффективно защищает воздуховод от выпадения конденсата. Кроме того, такая теплоизоляция будет существенно тоньше и дешевле, что положительно скажется на стоимости. Широкое распространение изоляционных материалов с внешней оболочкой из фольги обусловлено исключительно стереотипами и силой привычки.

Монтаж теплоизоляции


Для моделей небольшого диаметра преимущественно используют самоклеящеюся теплоизоляцию для воздуховодов. Несмотря на высокий уровень адгезии клеящего состава к металлу швы дополнительно проклеивают алюминиевым скотчем. А сам материал может дополнительно крепиться скотчем, металлическими или полимерными хомутами или металлической проволокой.

Процесс оклеивания теплоизоляционного материала на минеральной основе без специального клеевого слоя на воздуховоды среднего размера так же не представляет особых трудностей.

  1. Поверхность воздуховода предварительно очищают от пыли и грязи. Удаляются жировые пятна, которые могут помешать адгезии.
  2. Изоляционный материал раскраивается по размерам воздуховода;
  3. На металл наносится клей;
  4. К обмазанной поверхности прикладывается теплоизоляция;
  5. Прикатывается валиками для лучшего сцепления всей площадью;
  6. Швы проклеиваются алюминиевым скотчем.

Процесс устройства изоляции на воздуховодах большого сечения гораздо более трудоемкий. Для этого понадобиться аппарат для контактной сварки, с помощью которого к поверхности металла привариваются штифты.

Существуют готовые штифты с прижимными шляпками и металлической основой, на которую нанесена клеевая полимерная смесь. Их монтаж не требует специального оборудования, но стоимость таких приспособлений несоизмеримо выше. Для их монтажа необходимо тщательно обезжирить поверхность в точке наклеивания.

На установленные штифты насаживается теплоизоляционный мат, который блокируется прижимными шайбами. Швы проклеиваются скотчем в обязательном порядке. Так же производится и дополнительное крепление полимерными или металлическими хомутами.

Инновационные шумопоглощающие оконные стекла, и качественные звукоизолирующие материалы значительно снижают степень внешних шумов в помещениях. Тем не менее, значительную долю шумов в помещении могут создавать внутренние источники, такие как вентиляция и система кондиционирования. Шумы, производимые ими, а именно, — монотонное гудение и завывание воздуха, хотя и не раздражают так же сильно как звуки дискотеки в соседнем здании, но постепенно расшатывают нервную систему, провоцируют бессонницу и стрессы.

Именно поэтому изоляция воздуховодов считается одной из первостепенных задач, которые необходимо продумать и выполнить еще на проектировочной стадии.

Причины шумов в вентиляции

Основная причина шумности вентиляции – вибрация, возникающая из-за турбулентных воздушных потоков в трубах. Возникает она чаще всего из-за ошибок в проектировке вентиляции и неправильного акустического расчета.

Еще до того, как вентиляция будет установлена, разработчик должен тщательно изучить план дома, для того чтобы выяснить, в каких помещениях акустические шумы должны быть минимальными, а в каких можно не устанавливать изоляции.

Уже на основе этого расчета выбирается оптимальное установочное место, просчитываются все нюансы вентиляционной системы: материалы, размеры воздуховодов, особенности разветвления, расположение колен и заслонов. Тип вентиляционного оборудования, равно как и способ изоляции, выбирается в самую последнюю очередь, когда все прочие нюансы уже учтены.

У шумов в трубах вентиляции разная природа, в зависимости от которой можно выделить следующие их типы:

  • шум от работы оборудования: конвекторов, насосов. Передается непосредственно с потоками воздуха, через вытяжки;
  • вибрирующий шум от водяного охладителя и вентилятора. Возникает из-за неправильного монтажа и недостаточного уровня жесткости стенок воздуховодных труб;
  • «турбулентные» шумы, появляющиеся при прохождении потоками воздуха разветвлений, заслонок, колен и прочих точек турбулентности.

Шумоизоляция воздуховодов специальными материалами позволяет снизить или даже полностью устранить все вышеперечисленные типы шумов.

Ошибки при проектировании вентиляционных систем


К самым частым ошибкам на проектировочном этапе, влекущим за собой повышение акустических шумов относятся:

  • нерациональная установка шумных воздуховодов над помещениями, требующими низкого уровня шума. Такие шумные воздуховоды стоит устанавливать исключительно над рабочими и складскими помещениями, если же поменять их расположение невозможно, и они будут находиться над гостиными, залами приёмов и спальнями, то стоит обернуть трубы изолирующим материалом, утолщить их стенки. Кроме того, дабы снизить шумность вследствие турбулентных потоков воздуха, стоит устанавливать овальные или круглые воздуховоды;
  • применение систем рециркуляционного воздуха без специальных воздуховодных труб. Воздух в такой системе должен быть направлен по воздуховоду, а не по полости фальшпотолка и перекрытий. В противном случае шум от свободно циркулирующего по этой полости воздуха будет просто невыносим для жильцов;
  • отсутствие виброизоляции воздуховода. В меры по виброизоляции входит, прежде всего, установка вибрирующих элементов, служащих своего рода противодействием природной вибрации в системе. Кроме того, стоит помнить, что все соединения труб, смежных с элементами оборудования, должны быть гибкими. Самогенерирующийся шум, возникающий по вине турбулентных воздушных потоков, можно устранить путем установки больших воздуховодных труб, при прохождении которых воздушный поток замедляется. Турбулентные потоки могут возникать на любых участках вентиляции, а шум, который они создают, создает большие проблемы для тех, кто долговременно находится в вентилируемом помещении.

Особенности шумоизоляции воздуховодов


Самый популярный метод шумоизоляции – укладка внутри или снаружи труб специального материала (органическое и стекловолокно, каучук, пенополистирол). При этом источник шума заглушается, но причина его остается. Как уже было сказано, эту проблему следовало пресечь еще на корню, то есть на проектировочном этапе. Все методы звукоизоляции способны в той или иной степени снизить уровень шумов в функциональной среде, однако, ни один из них не устраняет первопричины шума.

Наилучшие изоляционные показатели у материалов, имеющих ворсистое покрытие: минеральная вата, органическое волокно. Не так давно на строительном рынке появился такой материал как ламельные маты, примечательные своей поперечной волокнистостью. Этот материал хорош, прежде всего, тем, что на сгибах он не образует заломов, так что материал максимально плотно прилегает к трубе, а уровень шума понижается на целых 8-15 Дб (конечный показатель звукоизоляции варьируется в зависимости от степени шума).

Для того чтобы подобрать подходящий в конкретном случае изоляционный материал, стоит учитывать сечение и форму труб. Очевидно, что наивысшую степень изоляции можно получить лишь тогда, когда вся поверхность системы вентиляции покрывается изолятором равномерно, что не допускает появления «звуковых разрывов» (мест, на которых нет изолирующего покрытия). Все швы и стыки необходимо тщательно заклеивать скотчем, либо стягивать бандажами.

Для снижения уровня турбулентных, неконтролируемых шумов, можно поставить специальный абсорбционный глушитель.

Материалы для изоляции вентиляционных воздуховодов


Тепловая и звуковая изоляция воздуховодов обычно производится посредством таких материалов:

  • минвата;
  • экструдированный пенополистирол;
  • пенополиуретановый утеплитель;
  • вспененный полиэтилен.

Процедура утепления воздуховодов минеральной ватой включает в себя следующие этапы:

  • очистка труб от грязи;
  • обмотка одним слоем минваты;
  • накладка фольгированного утеплителя толщиной 0,4 см (для того чтобы тепло не выходило наружу и холод не проникал вовнутрь);
  • запаивание швов алюминиевым скотчем.

Шумоизоляция воздуховодов пенополистироловым утеплителем обеспечивает наибольшую долговечность труб и повышает их сопротивляемость к коррозии. Для процедуры утепления нужно нарезать пенополистирол на куски нужного размера при помощи ножа, и надеть эти полуцилиндры на трубу, смещая их на 20-25 см, с целью более плотной усадки. Швы заделываются при помощи специальных затяжек-бандажей.

Установка пенополиуретана и пенопропилена ничем не отличается от установки экструдированного пенополистирола. Единственное отличие этих материалов в том, что они не горят и менее теплопроводны, нежели пенополистирол и минвата.

Лидирующую по частоте установок в бытовых условиях позицию занимает такой материал как вспененный полиэтилен. Процесс его установки крайне прост: все начинается с замера, затем оболочка полиэтилена вскрывается вдоль шва и крепится вокруг трубы, а по окончании работ стыки и швы заделываются клеем или скотчем.

Общее правило для всех видов утеплителя вентиляции – материал должен быть качественным, а установка – профессиональной. Корректно подобранный материал для изоляции, и правильная установка позволят сэкономить значительную сумму на ремонте вентиляционных систем, а также снизит риск возникновения аварий.

Описание:

Теплоизоляция воздуховодов выполняет следующие основные функции: Предупреждение образования конденсата как на внутренней, так и на наружной поверхностях воздуховода. Обеспечение огнестойкости во избежание распространения огня в случае возгорания. Ослабление шума и вибраций, возникающих в процессе движения воздуха по воздуховоду. Уменьшение теплопередачи между потоком воздуха в воздуховоде и внешней средой.

Теплоизоляция воздуховодов

Образование конденсата, безопасность, шум, энергосбережение – таковы критерии, которые следует учитывать при выборе материала для теплоизоляции воздуховодов.

Теплоизоляция воздуховодов выполняет следующие основные функции:

Предупреждение образования конденсата как на внутренней, так и на наружной поверхностях воздуховода.

Обеспечение огнестойкости во избежание распространения огня в случае возгорания.

Ослабление шума и вибраций, возникающих в процессе движения воздуха по воздуховоду.

Уменьшение теплопередачи между потоком воздуха в воздуховоде и внешней средой.

Образование конденсата

В воздуховодах, по которым проходит холодный воздух, основная проблема – предотвращение образования конденсата на внешней стороне воздуховода.

Образование конденсата может приводить к коррозионным повреждениям воздуховодов и образованию плесени. Кроме этого, влага может просачиваться в помещение, вызывая при этом повреждения отделки и обстановки. Для предотвращения данного явления необходимо, чтобы температура наружной поверхности воздуховода была не ниже температуры точки росы воздуха помещения, в котором проложен воздуховод. Проблему можно решить, если оборудовать воздуховод теплоизоляцией, которая, наряду с низкой теплопроводностью, обладала бы высоким сопротивлением паропроницанию.

Толщина теплоизоляционного слоя устанавливается с учетом температуры точки росы (которая, в свою очередь, зависит от температуры и влажности воздуха в помещении), разности температур воздуха в воздуховоде и в помещении, теплопроводности изоляции и параметров воздуховода (формы, размера).

Приведенный на рис. 2 график позволяет рассчитать требуемую толщину теплоизоляционного слоя. В отношении влагопоглощения, характеристики лучше у теплоизоляционных материалов с закрытыми порами.

Следует иметь в виду, что с течением времени определенное, хотя и незначительное, влагопоглощение происходит в любых теплоизоляционных материалах, что повышает их теплопроводность.

Материалы с низким сопротивлением паропроницанию следует защищать соответствующим паронепроницаемым покрытием.

Теплоизоляция и противопожарная безопасность

Свойства того или иного материала в отношении противопожарной безопасности определяют его огнестойкость. Существуют шесть классов огнестойкости – от нулевого (негорючий) до пятого – по степени роста пожароопасности. Класс огнестойкости присваивается по результатам испытаний, в ходе которых образец материала подвергается воздействию высокой температуры.

Для организации воздуховодов применяются материалы, имеющие нулевой (0) класс огнестойкости. В случае, если канал имеет многослойную облицовку, допускается класс огнестойкости «ноль-один» (0–1). Данное условие соблюдается, если все поверхности в рабочем режиме состоят из негорючего материала толщиной не менее 0,08 мм и обеспечивают непрерывную защиту внутреннего теплоизоляционного слоя, имеющего класс огнестойкости не выше первого (1). Крепления и соединения, длина которых не более чем пятикратно превышает диаметр самого воздуховода, должны выполняться из материала, имеющего класс огнестойкости «ноль» (0), «ноль-один» (0–1), «один-ноль» (1–0), «один-один» (1–1) или «один» (1). Воздуховоды класса «ноль» (0) имеют наружную обшивку из материала класса огнестойкости не выше первого (1).

Шум

Системы воздухоподготовки и воздухораспределения создают шумы, передающиеся, в том числе, через систему воздуховодов. Шум возникает не только из-за турбулентности воздушного потока, проходящего по воздуховодам, но и от работы вентилятора, в процессе которой создается вибрация и иные акустические эффекты. По воздуховодам шум может распространяться из помещения в помещение. Бороться с шумом можно, если поддерживать небольшую скорость воздуха в воздуховодах, установить демпфирующие устройства в месте присоединения вентилятора к воздуховоду, использовать эластичную подвеску для воздуховодов, а также демпфирующие прокладки в местах пересечения воздуховодами стеновых конструкций. Шум, распространяемый по воздуховодам, может быть ослаблен также применением специальных шумоглушителей и звукоизолирующего покрытия. Многие теплоизоляционные материалы отличаются хорошими звукоизоляционными свойствами и могут использоваться в качестве и тепло-, и звукоизоляции. Таким образом, при выборе теплоизоляционного материала для воздуховода следует учитывать и его акустическую эффективность.

Энергосбережение

Выбор толщины теплоизоляционного слоя с целью энергосбережения определяется экономическими соображениями. Теплоизоляция, ограничивая теплообмен между воздухом, проходящим по воздуховоду, и внешней средой, в ходе эксплуатации системы вентиляции позволяет получить определенную экономию энергоресурсов. При этом следует учитывать, что теплоизоляция имеет свою стоимость, подлежащую амортизации. Экономическая эффективность здесь определяется разницей между стоимостью сэкономленных за год энергоресурсов и суммой годовых отчислений на амортизацию затрат на устройство теплоизоляции. Оба показателя возрастают при увеличении толщины теплоизоляции, но характер роста различен. Следовательно, наибольшую эффективность можно получить лишь при некоторой определенной толщине теплоизоляции. Эта толщина варьируется в зависимости от типа теплоизоляционного материала и его стоимости. Следует также учитывать, что далеко не всегда имеется возможность использовать толщину, дающую наибольшую экономическую эффективность, как, например, в случае укладки каналов в подвесном потолке, где пространство крайне ограничено.

Для наиболее популярных материалов, применяемых для теплоизоляции воздушных воздуховодов, минимально допустимая толщина, в соответствии с действующими итальянскими нормативными документами, приведена в табл. 2. К воздуховодам типа «А» относятся воздуховоды, проложенные в неотапливаемом пространстве. Воздуховоды типа «Б» – каналы, встроенные в наружные стены внутри теплоизолированных строительных конструкций (в этом случае минимальная допустимая толщина теплоизоляции сокращается до 50 %). Воздуховоды типа «В» – каналы, проложенные в конструкциях, которые не сообщаются ни с наружной средой, ни с неотапливаемыми помещениями (минимальная допустимая толщина теплоизоляции сокращается до 30 %).

Теплоизоляция изнутри или снаружи?

Теплоизоляция воздуховода может выполняться с внутренней или с наружной стороны. В первом случае воздушный поток, проходящий по воздуховоду, непосредственно контактирует с теплоизоляцией. При использовании в качестве теплоизоляции минеральной ваты или стекловаты поверхностные волокна необходимо упрочнить, чтобы со временем они не отслаивались под действием воздушного потока, особенно в случае достаточно высокой его скорости. Для такого упрочнения применяют клеящие вещества, не влияющие на огнестойкость теплоизоляционного покрытия. При этом эти клеящие вещества не должны выделять токсичные газы в случае возгорания.

При использовании теплоизоляции внутри воздуховода необходимо увеличивать сечение воздуховода для сохранения расчетной пропускной способности при заданной скорости движения воздуха. Кроме того, сторона теплоизоляции, соприкасающаяся с потоком воздуха, должна быть достаточно гладкой, чтобы не увеличивать сопротивление при движении воздуха по воздуховоду.

На сегодня задача обеспечения посредством изоляционного материала комбинированной тепло- и звукоизоляции уже не столь актуальна, как раньше, поскольку зачастую проблема шума решается теперь установкой глушителей либо шумоизоляционными мероприятиями непосредственно в источнике звука. В силу этого использование наружной теплоизоляции в настоящее время предпочтительней.

Еще одно немаловажное обстоятельство, связанное с отказом от внутренней теплоизоляции – профилактика возникновения очагов бактерий, образования отложений пыли и грязи, из-за которых теплоизоляционный материал может начать расслаиваться, выделять летучие вещества и терять свои качества.

Кроме этого, при наружной теплоизоляции существенно снижается риск распространения огня из помещения в помещение в случае возгорания.

Установка

Независимо от расположения теплоизоляционного материала, важнейший фактор – предотвращение мостиков холода, снижающих эффективность теплоизоляции, а также обеспечение высокой паростойкости (рис. 3). Мостики холода могут возникать в местах крепления каналов к конструкциям здания.

Эрозии теплоизоляционного материала препятствуют:

При внутренней теплоизоляции – применению композитных материалов, где теплоизоляция комбинируется с металлическим слоем или пленкой.

При наружной теплоизоляции – использованию обшивки из неопрена, листовой оцинкованной стали или листового алюминия.

Характеристики теплоизолирующих материалов

Коэффициент теплопроводности l , Вт/м °С, – наиболее важная характеристика теплоизоляционных материалов. Сопротивление теплопередаче можно улучшить, увеличив его толщину либо выбрав материал с более низким коэффициентом теплопроводности. На графике рис. 1 представлено влияние температуры на коэффициент теплопроводности некоторых теплоизоляционных материалов.

Паропроницаемость: тепло-изоляционный материал может поглощать влагу конденсата. Следует учитывать, что теплопроводность возрастает при увеличении влагосодержания. Влагопоглощению особенно подвержены волокнистые и пористые теплоизоляторы с незакрытыми порами. Такие материалы необходимо защищать соответствующими пароизоляционными покрытиями.

Акустическая эффективность: шум может распространяться воздушным путем, т. е. звуковые волны проходят по воздуху либо в виде вибрации, создаваемой вентилятором, либо колебаниями воздуха внутри воздушного канала. Звуковые волны передаются через жесткую конструкцию сети воздуховодов и конструкции здания. Часть звуковой энергии излучается во внешнюю среду, часть – преобразуется в тепло в силу эффекта внутреннего демпфирования материала, из которого выполнен канал. От конструкции канала зависит степень затухания шума.

Стойкость к воздействию биологических реагентов: некоторые материалы могут подвергаться воздействию плесени, насекомых, микроорганизмов, приводящих к их разрушению. Возможно образование субстрата микроорганизмов.

Предельно допустимая рабочая температура: определяет диапазон устойчивости материала, применяемого в качестве теплоизоляции. Как правило, этот температурный диапазон лежит в пределах от –30 до +60 °С.

Санитарно-гигиенические показатели: при использовании воздуховодов не должны выделяться токсичные газы, а также любые иные вредные вещества, опасные для жизни и здоровья людей.

Применяемые теплоизоляционные материалы

Минеральные волокна. Изоляционные материалы из минеральной ваты или стекловаты поставляются в виде формованных жестких и полужестких (трубные секции и панели) элементов либо в виде материала, плотность которого может меняться посредством прессования непосредственно во время укладки, что позволяет придать ему требуемую форму. Войлок поставляется в рулонах. При наружной укладке защищается армированным алюминиевым крафт-листом, при внутренней – слоем стекловолокна с поверхностной пропиткой. Трубные секции используются для наружной облицовки каналов с армированной алюминиевой защитой.

Пеноэластомеры. Гибкие пеноматериалы с закрытыми порами. Выпускаются в пластинах либо экструдированием с последующей вулканизацией пены. Внешняя сторона гладкая, со стороны разреза – пористая. По огнестойкости относятся к категории самогасимых материалов. Не подвержены действию плесени и микроорганизмов. Имеют высокую степень стойкость к влагопоглощению паропроницанию.

Производные полимеризации углеводородов (полиуретан, полиэтилен, полистирен, полиизоцианат, поливинилхлорид). Обычно выпускаются в пластинах, блоках, трубных секциях и т. п. Эти материалы представляют собой либо жесткую термопластмассу (полистирен, поливинилхлорид), либо жесткую термозатвердевающую (полиуретан, полиизоцианат), либо гибкий материал (полиэтилен, гибкий полиуретан). Применяются для внутренней укладки. Материал с незакрытыми порами отличается хорошей звукоизоляцией, но имеет недостаток – подвержен действию плесени и микроорганизмов. Материалы с закрытыми порами в силу меньшей пористости предпочтительнее с санитарно-гигиенической точки зрения, но отличаются худшей звукоизоляцией. Пенополиэтилен с закрытыми порами поставляется в пластинах и трубах, он огнестойкий, самогасимый. Высокая гибкость позволяет легко придать ему требуемую форму. Пенополиуретан и пенополиизоцианат с закрытыми или открытыми порами относятся к самогасимым или негорючим материалам. Поставляется в блоках, которые разрезаются на отдельные пластины. Полиуретан также поставляется в виде трубных секций, как правило, в комплекте с облицовочным материалом (ПВХ, полиэтиленом или алюминием), используемым в качестве пароизоляции. Полистирен выпускается в виде поропласта и экструдата, поставляется в блоках, которые разрезаются на пластины требуемой толщины. С определенными добавками является негорючим самогасимым материалом. Поливинилхлорид с закрытыми порами имеет хорошую влагостойкость и относится к категории негорючих.

Фенольные вспученные смолы. Имеют закрытые поры, огнестойкие, не подвержены действию микроорганизмов. Применяются в основном в холодильных системах.

Перепечатано с сокращениями из журнала «RCI».

Перевод с итальянского С. Н. Булекова.

Воздуховоды – это важный элемент всей климатической системы здания, которая монтируется в виде разветвленных каналов, по которым циркулирует воздух. Грамотная теплоизоляция воздуховодов поможет избежать образования конденсата в магистрали, отвечающей за подачу чистого воздуха в помещение, ведь здесь эта вероятность весьма велика из-за столкновения холодных и теплых атмосферных масс.

Назначение изоляции

Несмотря на название, теплоизоляция для обработки воздуховодов выполняет несколько задач одновременно, а именно:

  • препятствует образованию конденсата;
  • уменьшает вибрацию и снижает уровень шума во время работы;
  • оказывает противопожарное действие;
  • значительно снижает тепловые потери.

Виды утеплителя

Для изоляционных работ на воздуховодах могут быть использованы любые материалы данного назначения, которые применяются для стен, полов или потолка. Однако существуют отдельные образцы, специально разработанные для такой цели.

Специальный теплоизолятор

К примеру, таким материалом является синтетический вспененный каучук, производимый в виде эластичных гибких листов. Он отлично держит заданную форму, служит четверть века, абсолютно не горит и обладает звукоизоляционными свойствами.

При попадании влаги каучук не гниет, а его теплопроводность достигает 0,036 Вт/м С.

Традиционные материалы

К традиционным утеплителям можно отнести:


  • минеральную вату (0,035 – 0,045 Вт/мС, эксплуатация не менее 30 лет);
  • базальтовые волокна (0,030 – 0,048 Вт/мС, служит около 50 лет);
  • стекловата (0,035 – 0,05 Вт/мС, без замены до 25 лет);
  • вспененный полиэтилен (0,04 Вт/мС, срок службы до 80 лет);
  • пенополиуретан (0,02 – 0,03 Вт/мС).

В современной практике нередко встречается утепленный воздушный клапан, при установке которого теплоизоляция для системы воздуховодов не требуется. Эта конструкция состоит из рамы, нагревательного элемента и поворотных лопаток. С ее помощью регулируется подача прогретого воздуха. В какой-то мере клапан является своеобразным утеплителем.


Во время втягивания внутрь воздух нагревается, при этом исчезает грань между холодными и горячими воздушными массами. Для каждой отдельной системы вентиляции требуется свой клапан, однако будет необходим тщательный расчет, без которого невозможно правильно подобрать приспособление.

Выбор материала

Перед тем как провести расчет толщины материала, необходимо ознакомиться с требованиями, которые предъявляются к данному типу продукции.

Теплопроводность и паропроницаемость

В первую очередь материал должен обладать низким коэффициентом теплопроводности. Не менее важным параметром является и паропроницаемость, от которой зависит способность изделия поглощать влагу.


Волокнистую и пористую изоляцию нужно дополнительно защищать соответствующим покрытием.

Звукопоглощение

Желательно, чтобы изоляция обладала звукопоглощающим эффектом, ведь работа климатических каналов сопряжена с колебаниями воздуха, а значит, будет появляться характерный шум. Нельзя забывать и о воздействии биологических явлений (плесень, микроорганизмы, насекомые).

Температура и экологичность

Рабочая температура, при которой материал не утратит своих свойств, ограничивается диапазоном от –30 до +60 градусов, при этом необходимо исключить выделение токсических веществ, вредных для человека и животных.

Факторы, влияющие на способ утепления

Качественная теплоизоляция для обработки воздуховодов напрямую зависит от толщины материала, внешней температуры, влажности воздуха, климатической обстановки, в которой постоянно находится канал и других факторов.


Есть специальная таблица с объединенными показателями. Ознакомиться с нормативами можно в СНиП 2.04.44-88. Метод установки изоляционного материала выбирается с учетом места пролегания гибкого воздуховода (в помещении или за его пределами).

Уличные работы

В том случае если воздуховод ранее был утеплен, нужно провести подготовительные процедуры и снять с него старый слой изоляции. Затем зачищаются поверхности от клея и других остатков предыдущих составов.

Листовая изоляция

При использовании листового или рулонного материала сразу приступают к обмотке канала выбранным утеплителем, обеспечивая нужное количество слоев, что зависит от изоляционных требований.


Лучшим решением для таких манипуляций будет самоклеящаяся основа.

Полиуретан

Нужно брать в расчет то, что для монтажа полиуретанового изолятора придется сооружать армирующий каркас из специальной сетки (металлической или синтетической). Каркас натягивается на гибкую поверхность воздуховода, а его концы фиксируют между собой крепежными болтами. Иногда болты заменяют металлическими хомутами.

Утеплительные маты

Самая непростая задача – это укладка утеплительных матов. Из-за большой толщины с ними неудобно работать. Как и в предыдущем случае, фиксация материала происходит при помощи ленточных металлических хомутов или гибкой проволоки.

Гидроизоляция

Теплоизоляция для укрытия воздуховодов должна быть защищена слоем, обеспечивающим прочную и надежную гидроизоляцию, которая может эксплуатироваться в течение длительного времени.


Крепить защиту нужно так, чтобы ее не сорвал ветер, а также не испортили другие климатические явления. В роли такой «брони» чаще всего выступает лист оцинкованной жести или неопрен, который постепенно вытесняет из обихода металлическую деталь.

Внутренние работы

Технологический процесс по утеплению воздуховодов внутри здания идентичен тому, что применяется при наружных работах. Отличие состоит лишь в том, что здесь нет негативных факторов в виде климатических явлений.

Однако если магистрали проложены в местах с повышенной влажностью, без дополнительной защиты обойтись не получится. Что касается частных домов или квартир, беспокоиться о негативной среде нет причин, и работы мало чем будут отличаться от обработки стен или полов.


На начальном этапе теплоизоляция для внутренних воздуховодов заключается в монтаже мембраны, которая окажет гидроизоляционное действие. Затем необходимо закрепить утеплитель, поверх которого фиксируется еще один слой мембраны, а лучше алюминиевой фольги. Оба эти материала сыграют важную роль паробарьера.

Как рассчитать слой утеплителя?

Очень важно провести грамотный расчет толщины теплоизоляции. Нам потребуются два основных параметра материала:

  1. Показатель теплопроводности.
  2. Показатель поверхностной теплоотдачи.

Чтобы проще было сориентироваться, ниже расположена таблица, в которой приведены показатели теплопроводности самых популярных утеплителей.


Проводя расчет толщины материала можно сказать, что чем меньше он проводит тепло, тем тоньше может быть его слой, и наоборот.

Бытует мнение, что в обработке воздуховода предпочтительнее применять утеплитель, у которого есть фольгированный слой, но это заблуждение. Современный строительный рынок предлагает множество утеплителей, которые даже без фольги превосходят по своим полезным показателям вышеназванный материал.

К примеру, тот же синтетический каучук отлично справляется со своими защитными функциями. Специалисты советуют особое внимание уделять удобству фиксации, поэтому лучше других здесь подойдет самоклеящаяся изоляция.

Во избежание конденсации в системе воздуховодов и обеспечения необходимой температуры используют утеплитель для вентиляции. Игнорирование данного правила влечет за собой поэтапное разрушение труб, вследствие чего теряются первоначальные параметры эксплуатации вентиляционной системы.

Особенности утеплителей для воздуховодов и вентиляции

Самоклеящаяся теплоизоляция воздуховодов состоит из листового вспененного полиэтилена, сшитого со слоем отражающей алюминиевой фольги. Гибкая по своей форме, она позволяет утеплить воздуховод своими руками. Плюсами данного материала являются его эффективность в плане тепловой изоляции, что обусловлено низкой теплопроводностью, экономия средств в ходе монтажа воздуховодов и несложность в установке. Для вентиляционных систем используются негорючие утеплители . Это повышает пожаробезопасность здания, поскольку в случае пожара пламя не будет распространяться по трубным коммуникациям.

Какой утеплитель лучше выбрать для вентиляции

Для утепления воздуховодов специалисты рекомендуют приобрести минеральную вату, например, теплоизоляцию Rockwool . Данный материал состоит из минеральных волокон и по своей структуре достаточно эластичный, что позволяет во время монтажа производить прессование материала с целью придания ему необходимой плотности и конфигурации. В продаже есть изоляторы в виде трубных секций и панелей. Также описываемый материал бывает полужестким или жестким.

Существуют и другой утеплитель для воздуховодов - войлок, в состав которого входит стекловолокно и алюминиевый армированный крафт-лист. Такой материал можно применять при внутренней или наружной укладке вентиляционных магистралей.

Пеноэластомеры - поколение новых теплоизоляторов, обладающих гибкой структурой. Их базовым преимуществом является неподверженность к воздействию различных микроорганизмов. Пеноэластомеры обладают низким влагопоглощением. Они защищают воздуховоды от коррозии и увеличивают срок эксплуатации вентиляционной системы.

Особенности монтажа теплоизоляции для вентиляции и воздуховодов

Перед установкой утеплителя вентиляционных труб необходимо произвести очистку последних от постороннего мусора и грязи. Затем воздуховоды обматываются в один слой минеральной ватой или другим выбранным утеплителем. Сверху накладывается фольгированный материал. Швы на поверхности труб герметизируют алюминиевым скотчем.