Ремонт        29.09.2019   

Солнечные батареи для космоса - Журнал Другого. Солнечная батарея (панель)

В 1945 году были получены данные разведки об использовании в армии США радиопереговорных устройств. Об этом было доложено И.В. Сталину, который незамедлительно организовал выпуск постановления об оснащении Советской армии средствами радиосвязи. Был создан Элементный электро-гальванический институт, впоследствии названный "Квант". За короткое время коллективу института удалось создать широкую серию источников тока, необходимых для средств радиотехнической связи.

Николай Степанович Лидоренко возглавлял Научно-производственное предприятие (НПП) "Квант" с 1950 по 1984 годы.

С 1950 года институт занимался созданием электрогенерирующих систем для проекта "Беркут". Суть проекта состояла в создании системы противоракетной обороны Москвы с использованием зенитных ракет. Н.С. Лидоренко был вызван в Третье главное управление при Совете Министров, и ему было предложено возглавить работы по данной тематике, в то время секретной. Необходимо было создать систему обеспечения электроэнергией зенитной установки и самой ракеты в полете. Использование генерирующих устройств на основе обычных кислотных электролитов в ракете было невозможно. Н.С. Лидоренко поставил задачу проработать источники тока с солевыми (не водосодержащими) электролитами. Соль как электролит упаковывалась в сухом виде. Во время пуска ракеты внутри аккумулятора в нужный момент срабатывал пиропатрон, тепло расплавляло соль, и только после этого вырабатывался электрический ток. Этот принцип был использован в системе С-25.

В 1950 году к Н.С. Лидоренко обратился Сергей Павлович Королев, работавший над ракетой Р-2. Полет многоступенчатой ракеты превращался в сложный технологический процесс. Коллективом, руководимым Н.С. Лидоренко, были создны автономные системы энергообеспечения ракеты Р-2, а впоследствии, и для ракеты следующего поколения Р-5. Требовались источники питания большой мощности: необходимо было обеспечить питанием не только электросхемы самой ракеты, но и ядерные заряды. Для этих целей предполагалось использовать тепловые батареи.

В сентябре 1955 года было начато строительство атомной подводной лодки К-3 "Ленинский комсомол". Это был вынужденный ответ на введение в строй в январе 1955 американской атомной подводной лодки "Наутилус". Одним из самых уязвимых звеньев оказались аккумуляторы. В качестве источников ток Н.С. Лидоренко предложил использовать элементы на основе серебра и цинка. Энергоемкость аккумулятора была увеличена в 5 раз, так что устройства способны были давать порядка 40000 ампер/часов, с 1 млн Дж в пучке. Уже через два года "Ленинский комсомол" вышел на боевое дежурство. Были продемонстрированы надежность и эффективность созданных под руководством Н.С. Лидоренко аккумуляторных устройств, которые оказались в 3 раза мощнее их американского аналога.

Следующим этапом деятельности Н.С. Лидоренко была разработка электрических батарей для торпед. Сложность состояла в необходимости самостоятельных источников питания при малом объеме, однако она была успешно преодолена.

Особое место занимают работы над созданием знаменитой Королёвской "семерки" - ракеты Р-7. Исходным пунктом в проведении масштабных работ по ракетной тематике было Постановление Совета Министров СССР от 13 мая 1946 года, подписанное И.В. Сталиным. В наше время некоторые журналисты тенденциозно пытаются объяснить то внимание, которое уделяло руководство нашей страны космическим проектам, в первую очередь военными интересами. Это далеко не так, о чем свидетельствуют имеющиеся документальные материалы того времени. Хотя, безусловно, бывали и исключения. Так, Н.С. Хрущев несколько раз с недоверием читал докладные записки С.П. Королёва, но вынужден был отнестись к проблеме серьезно только после сообщения Председателя КГБ о неудачном запуске американской ракеты "Ред Стоун", из которого следовало, что американская машина способна вывести на орбиту спутник размером примерно с апельсин. Но для самого Королёва гораздо более существенно было то, что ракета Р-7 способна была лететь в Космос.

4 октября 1957 года был произведен успешный запуск Первого в мире искусственного спутника Земли. Автономная системы энергопитания спутника была разработана Н.С. Лидоренко.

Второй советский спутник был запущен с собакой Лайкой на борту. Системы, созданные под руководством Н.С. Лидоренко, обеспечивали жизнедеятельность на спутнике с множеством источника тока различного назначения и конструкции.

В этот период Н.С. Лидоренко пришел к пониманию возможности использования в то время нового, бесконечного источника питания - Солнечного света. Солнечная энергия преобразовывалась в электрическую с помощью фотоэлементов на основе кремниевых полупроводников. В то время был завершен цикл фундаментальных работ по физике, и были открыты фотоэлементы (фотопреобразователи), работающие по принципу преобразования падающего солнечного фотонного излучения.

Именно этот источник - солнечные батареи - был основным и практически бесконечным источником энергии для третьего Советского искусственного спутника Земли - автоматической орбитальной научной лаборатории, весившей около полутора тонн.

Началась подготовка к первому полету в Космос человека. Бессонные ночи, долгие часы напряженной работы... И вот, настал этот день. Вспоминает Н.С. Лидоренко: "Всего за день до Гагаринского старта, на Совете Главных конструкторов, решается вопрос... Молчат. Королев: "Ну так, еще раз, какое ваше мнение?" Опять зал молчит. "Так я принимаю мочание за знак согласия". Королёв расписывается, и мы все - двенадцать подписей сзади, и полетел Гагарин..."

За месяц до полёта Гагарина - 4 марта 1961 года - в первые в истории был осуществлен перехват боеголовки стратегической ракеты. Источником питания принципиально нового вида техники - противоракеты В-1000 - была батарея, созданная объединением "Квант".

В 1961 году началась также работа над созданием космических аппаратов класса "Зенит" - со сложными системами единого питания из больших блоков, в которые входило от 20 до 50 батарей.

В ответ на событие 12 апреля 1961 года, президент США Джон Кеннеди заявил: "Русские открыли это десятилетие. Мы закроем его". Он сообщил о намерении отправить человека на Луну.

В США всерьез начали думать о размещении оружия в космосе. В начале 60-х американские военные и политики строили планы милитаризации Луны - идеального места для командного пункта и военной ракетной базы. Из слов Стэнли Гарднера, командующего ВВС США: "Через два или три десятилетия Луна по своему экономическому, техническому и военному значению будет иметь в наших глазах не меньше ценности, чем те или иные ключевые районы на Земле, ради обладания которыми происходили основные военные столкновения".

Физик Ж. Алферов провел серию исследований по свойствам гетероструктурных полупродников - рукотворных кристаллов, созданных методом послойного напыления различных компонентов в один атомный слой.

Н.С. Лидоренко принял решение о немедленном внедрении в масштабный эксперимент и технику этой теории. На Советском автоматическом космическом аппарате - Луноходе впервые в мире были установлены солнечные батареи, работающие на арсениде галлия и способные выдерживать высокие температуры свыше 140-150 градусов Цельсия. Батареи были установлены на откидной крышке Лунохода. 17 ноября 1970 года в 7 часов 20 минут по Московскому времени Луноход-1 коснулся поверхности Луны. Из Центра управления полётом поступила команда на включение солнечных батарей. Долгое время от солнечных батарей не было отклика, но затем сигнал прошел, и солнечные батареи прекрасно показали себя за всё время работы аппарата. За первый день Луноход прошел 197 метров, за второй - уже полтора километра.. Через 4 месяца, 12 апреля, возникли трудности: Луноход попал в кратер... В конце концов было принято рискованное решение - закрыть крышку с солнечной батареей и пробиваться вслепую назад. Но риск оправдался.

Коллективом "Кванта" была примерно в это же время решена задача создания прецизионной системы термолигулирования повышенной надёжности, которая допускала отклонения температуры в помещении не более 0,05 градуса. Установка успешно работает в Мавзолее В.И. Ленина уже более 40 лет. Она оказалась востребованной и в ряде других стран.

Важнейшим этапом деятельности Н.С. Лидоренко было создание систем энергообеспечения пилотируемых орбитальных станций. В 1973 году на орбиту была выведена первая из таких станций - станция "Салют" - с огромными крыльями солнечных батарей. Это было важным техническим достижением специалистов "Кванта". Солнечные батареи были составлены из панелей из арсенида галлия. Во время работы станции на освещенной Солнцем стороне Земли избыток электроэнергии переводился в электрические аккумуляторы, и эта схема давала практически неиссякаемое энергоснабжение космического корабля.

Успешная и эффективная работа солнечных батарей и основанных на их использовании систем энергообеспечения на станциях "Салют", "Мир" и других космических аппаратах подтвердила правильность стратегии развития космической энергетики, предложенной Н.С. Лидоренко.

В 1982 году за создание систем космической энергетики коллектив НПП "Квант" был награжден Орденом Ленина.

Созднные коллективом "Кванта", руководимым Н.С. Лидоренко, источники электропитания питают практически все военные и космические системы нашей страны. Разработки этого коллектива называют кровеносной системой отечественного оружия.

В 1984 году Николай Степанович оставил пост Главного конструктора НПО "Квант". Он оставлял цветущее предприятие, которое называли "Империя Лидоренко".

Н.С. Лидоренко решил вернуться к фундаментальной науке. В качестве одного из направлений он решил использовать свой новый способ прикладного решения проблемы преобразования энергии. Отправной точкой стал тот факт, что человечество научилось использовать только 40% от вырабатываемой энергии. Имеются новые подходы, позволяющие увеличить надежду повысить эффективность электроэнергетики на 50% и более. Одна из основных идей Н.С. Лидоренко состоит в возможности и необходимости поиска новых фундаментальных элементарных источников энергии.

Источники материала: Материал составлен на основе данных, ранее неоднократно опубликованных в печати, а также на основе кинофильма "Ловушка для Солнца" (режиссер - А. Воробьев, эфир 19.04.1996)


Успешная и эффективная работа солнечных батарей и основанных на их использовании систем энергообеспечения космических аппаратов - подтверждение правильности стратегии развития космической энергетики, предложенной Н.С. Лидоренко.

Изобретение относится к энергетическим системам космических объектов, основанным на прямом преобразовании лучистой энергии Солнца в электричество, и может быть использовано при создании экономичных солнечных батарей большой площади. Сущность: в космической солнечной батарее, содержащей несущий каркас, размещенные на нем фотоэлементы, включающие два проводящих электрода, разделенных зазором, один из которых выполнен светопроницаемым, на внутренней поверхности размещено покрытие из материалов с работой выхода, меньшей работы выхода материала электрода, причем величина зазора не превышает длины свободного пробега фотоэлектронов. 5 ил.

Изобретение относится к энергетическим системам космических объектов, основанным на прямом преобразовании лучистой энергии Солнца в электричество, и может быть использовано при создании космических солнечных батарей (СБ) большой площади. Известны солнечные батареи, содержащие каркас, размещенные на нем фотоэлементы, включающие два проводящих электрода, разделенных зазором, один из которых выполнен светопроницаемым Солнечные батареи на основе полупроводниковых структур различного типа обладают достаточно высоким КПД преобразования солнечной энергии. Недостатками известных СБ, основанных на внутреннем фотоэффекте, являются сложность структуры ФЭП с использованием в ней дефицитных материалов, например арсенида галлия; принципиальная ограниченность снизу толщины ФЭП ввиду многослойной, особенно варизонной, структуры преобразователя с применением подложек,различных оптических и защитных покрытий и вследствие этого относительно большая масса ФЭП, превышающая массу каркаса СБ, выполненного из высокопрочных материалов; чувствительность к воздействию космической среды, в частности к корпускулярным излучениям, что вызывает быструю деградацию рабочих характеристик,снижающую ресурс. В итоге данные недостатки приводят к высокой стоимости электроэнергии, вырабатываемой подобными СБ. Наиболее близкой к предлагаемому техническому решению является выбранная в качестве прототипа космическая солнечная батарея, содержащая несущий каркас, размещенные на нем фотоэлементы, включающие два проводящих электрода, разделенных зазором, один из которых выполнен светопроницаемым В качестве токогенерирующей области, образуемой между поверхностями ФЭП, в такой СБ используется гомо- или гетероструктурный слой (слои), на который нанесены электроды (например,оптический и барьерный) и необходимые покрытия. Токосъемные элементы могут быть выполнены в виде тонких проводящих сеток, образованных на поверхностях электродов. Несущий каркас представляет собой ферменную конструкцию из высокопрочных, например углепластиковых, стержневых элементов, на которую натянут ФЭП в виде гибких панелей на сетчатой подложке, закрепленных на каркасе по периферии. Известная СБ обладает достаточно высоким КПД (практически до 15-20%) и небольшой толщиной гибких панелей СБ (до 100-200 мкм), облегчающей хранение, транспортировку и развертывание СБ в рабочее состояние, например, из рулона. Недостатками известной СБ являются уже отмеченные выше, типичные для полупроводниковых ФЭП. Эти недостатки, в итоге, выражаются в недостаточно высоких удельных энергетических характеристиках (мощность не превышает 0,2 кВт/кг или 0,16 кВт/м 2) и эксплуатационно-технологических характеристиках (значительная за счет ФЭП удельная масса СБ, сложность изготовления, чувствительность к космическим воздействиям и др.), что приводит к повышенной стоимости выработки электроэнергии СБ данного типа. Целью изобретения является повышение удельной электрической мощности на единицу массы при одновременном повышении стойкости к внешним воздействиям в условиях космического пространства. Указанной цель достигается тем, что в космической солнечной батарее, содержащей несущий каркас, размещенные на нем фотоэлементы, включающий два проводящих электрода, разделенных зазором, один из которых выполнен светопроницаемым, на внутренней поверхности одного из электродов размещено покрытие из материала с работой выхода, меньшей работы выхода его материала, причем величина зазора не превышает длины свободного пробега фотоэлектронов. Сущность изобретения состоит в использовании в конструкции предлагаемой СБ в отличие от традиционных принципа внешнего фотоэффекта, при этом один из проводящих электродов выполняет функции фотокатода, из которого фотоэлектроны могут выбиваться преимущественно либо в направлении падающего света с теневой поверхности пленки, либо во встречном направлении с освещенной поверхности пленки. Фотоэлектроны захватываются другой пленкой с проводящим электродом, выполняющей функции анода. Поскольку катодная и анодная пленки выполнены из материалов с различной работой выхода электронов, то при воздействии на СБ светового потока между пленками устанавливается некоторая равновесная разность потенциалов (ЭДС порядка 0,6-0,8 В) при условии, что зазор между пленками меньше длины свободного пробега фотоэлектронов в среде зазора (это условие выполняется для космического вакуума при слабом внешнем магнитном поле). Наиболее существенно то, что проводящие (в том числе металлические) пленки могут быть выполнены гораздо более тонкими, чем полупроводниковые панели СБ порядка 0,5 мкм и менее, так что удельные характеристики предлагаемой СБ оказываются гораздо выше, чем у традиционных СБ. Кроме того, чувствительность электрофизических характеристик предлагаемой СБ к воздействию факторов космической среды (микрометеоритам, корпускулярным излучениям) является значительно более слабой. Производство пленок и сборка из них СБ на несущем каркасе технологически просты, а условия малой гравитации (невесомости) позволяют создавать легкие СБ весьма большой площади, а следовательно, и мощности. Преимущественным вариантом исполнения предлагаемой СБ является конструкция, где каждая из пленок с проводящим электродом выполнена в виде изолированных друг от друга полос, причем полосы разных пленок попарно образуют секции фотоэлектрического преобразователя, объединенные в последовательную цепь, в которой каждая тыльная полоса одной из секций преобразователя электрически связана с ориентируемой к Солнцу полосой соседней секции преобразователя, а токосъемные элементы электрически связаны с тыльной полосой на одном конце цепи и с ориентируемой к Солнцу полосой на противоположном конце цепи. Данная конструкция обладает повышенной технологичностью при построении СБ большой площади. При этом такая конструкция СБ позволяет уменьшить величину тока, протекающего по секциям ФЭП, в расчете на единицу вырабатываемой мощности и тем самым уменьшить толщину пленок, т.е.еще более снизить массу СБ. В предлагаемой СБ на поверхность пленки с проводящим электродом (фотокатода) нанесено покрытие, уменьшающее величину работы выхода электронов из этой пленки. Это можно осуществить, например, путем оксидирования соответствующей металлической (например,алюминиевой) пленки. При расположении анода над фотокатодом первый должен быть светопроницаемым,поэтому в данном варианте предлагаемой СБ проводящая пленка, ориентируемая к Солнцу, может быть выполнена перфорированной или сетчатой структуры с минимально возможным затенением катодной пленки. Сущность изобретения поясняется чертежами, где на фиг.1 показана схема СБ с пленочным фотокатодом, ориентированным к Солнцу; на фиг.2 показана схема СБ с фотокатодом на тыльной поверхности; на фиг.3 показана принципиальная схема СБ с секционированием; на фиг.4 представлена эквивалентная электрическая схема СБ; на фиг.5 представлен вариант конструктивного исполнения СБ. Как показано на фиг.1, СБ содержит размещенные на несущем диэлектрическом каркасе 1 проводящие пленки, одна из которых служит фотоэмиссионным катодом 2, а другая анодом 3. Пленка 2 расположена вдоль поверхности, ориентируемой к солнечному световому потоку 4. Через токосъемные элементы 5 проводящие пленки могут быть подключены к нагрузке 6. По другому варианту исполнения СБ, показанному на фиг.2, фотокатод 2 может располагаться вдоль тыльной поверхности, а анодная пленка 3 выполнена светопроницаемой, в частности перфорированной или изготовленной в виде тонкопроволочной сетки. Материалами электродов могут служить такие металлы, как алюминий, серебро, золото, платина, некоторые сплавы, оксиды щелочных металлов и другие соединения. Различная работа выхода электронов получена для пленок из одного и того же металла за счет оксидирования одной из них или иной поверхностной обработки. Как показано на фиг.3, катодная и анодная пленки могут быть выполнены в виде изолированных друг от друга полос 7 и 8, причем полосы одного типа (анодные) электрически связаны с полосами другого типа (катодными) по контактным стыкам (швам) 9 так, что здесь ФЭП большой площади представляет собой систему (цепь) последовательно связанных электрогенерирующих секций 10 меньших размеров. Каждая секция увеличивает напряжение, подаваемое на нагрузку 6, в соответствии с эквивалентной электрической схемой цепи, показанной на фиг.4. Как показано на фиг.5, конструктивно СБ со схемой по фиг.3 может содержать раскладной или сборный каркас с продольными 11 и поперечными 12 несущими элементами. Фрагменты ФЭП 13 в виде состыкованных разнотипных полос натянуты на каркас с пропусканием их через поперечные элементы 12 и закреплением по кромкам на тех же элементах 12, например, с помощью диэлектрических эластичных полотен (сеток, расчалок и т.п.) 14. Жесткость СБ в развернутом состоянии обеспечивается растяжками 15, стягивающими концы продольных стержневых элементов 11, шарнирно сочлененных в их центральных частях. Функционирование и эксплуатация СБ согласно изобретению осуществляется следующим образом. В космическое пространство выводится либо вся СБ в сложенном виде, либо ее фрагменты, собираемые затем в единую систему. Развернутая в рабочее состояние СБ ориентируется на Солнце одной из своих пленочных поверхностей в зависимости от типа фотокатода (см. фиг.1 и 2). Вследствие возникающей при этом электронной эмиссии в зазоре между пленками появляется электрическое поле, создающее разность потенциалов анодной и катодной пленок, равную разности работ выхода этих пленок. При подключении к СБ через токосъемные элементы 5 некоторой нагрузки 6 в цепи ФЭП возникает электрический ток, обеспечивающий питание нагрузки необходимой электроэнергией. Преимущественная область применения предлагаемых СБ высокие, в частности геостационарные, орбиты, где минимально воздействие атмосферы, магнитного поля планеты и ее гравитационного градиента, что позволяет создавать СБ весьма большой площади, а следовательно, большой мощности. Технико-экономическая эффективность предлагаемого изобретения может быть подтверждена следующими оценками. Известно, что КПД энергопреобразования при внешнем фотоэффекте составляет 2-10% Учитывая, что мощность солнечного светового потока у Земли составляет примерно 1,4 кВт/м 2 , электрическая мощность, вырабатываемая единицей поверхности СБ, составит порядка 0,051400 70 Вт/м 2 , если принять КПД 5% Этот показатель заметно хуже, чем у серийных кремниевых СБ, где достигается 110 Вт/м 2 . Однако толщина пленок может быть доведена до 0,5 мкм. Тогда масса 1 м 2 пленки, например, из алюминии составит 110,510 -6 2,710 3 1,3510 -3 кг 1,35 г для толщины 0,5 мкм. Отсюда удельная электрическая мощность (по массе ФЭП) с учетом использования двух пленок составит Для ФЭП с удельной массой 25 10 г/м 2 и каркаса с такой же в среднем удельной массой, т. е. если удельная масса солнечной батареи примерно 20 г/м 2 , удельная электрическая мощность СБ составит Этот основной показатель предлагаемой СБ почти в 20 раз превышает такой же показатель для перспективных полупроводниковых СБ, достигающий 200 Вт/кг, причем для реализации предлагаемой СБ не требуется дефицитных материалов и сложных технологий, поскольку получение очень тонких проводящих пленок является практически освоенным процессом. Стоимость создания предлагаемых СБ следует ожидать на уровне стоимости их выведения на орбиту, а поскольку последняя пропорциональна массе СБ, то выигрыш в стоимости выработки электроэнергии с помощью предлагаемых СБ становится достаточно очевидным. Кроме того, предлагаемые СБ характеризуются более длительным ресурсом и менее жесткими эксплуатационными требованиями. Предлагаемые СБ допускают возможность их эффективного использования в качестве управляющих (солнечно-парусных) органов ориентации и коррекции орбиты космических объектов. Перспективы совершенствования предлагаемых СБ связаны в основном с созданием особо тонких проводящих пленок (менее 0,1 мкм) и сверхлегких несущих каркасов. Соответствующие исследования ведутся в области устройств типа "солнечный парус". Источники информации 1. Колтун М.М. Солнечные элементы. М. Наука, 1987 г. стр.136-154. 2. Грилихес В.А. и др. Солнечная энергия и космические полеты. М. Наука, 1984г. стр.144 (прототип).


Где будем размещать КСЭ? Вероятнее всего на ГСО. На других орбитах надо или приёмники по всей планете ставить, или кучу аккумуляторов с собой возить.

Не будем пока фантазировать, а разберёмся с имеющимися возможностями

РН «Ангара» с космодрома «Плесецк» донесёт до ГСО 3-4 тонны. Что можно в них засунуть? Очень приблизительно квадратов 100 панелей солнечных батарей. С постоянной направленностью на Солнце и КПД процентов 20 можно выжать по 300 Вт с квадрата. Предположим они будут деградировать по 5% в год (надеюсь никого не удивит, что солнечные панели в космосе портятся от радиации, микрометеоритов и пр.).
Давайте считать: (100*300*24*365*20)/2=2 628 000 000 Вт ч.
Чтобы осознать весь масштаб проблемы, пусть эти мегаватты без потерь добираются до Земли. Мощность внушает, но что если мы никуда не летим. В наличии 300 тонн керосина. Керосин почти бензин. Делает ещё одно допущение и берём обычный бензогенератор (200КВт за 50 литров в час).
200000*300000/50=1 200 000 000 Вт ч
Что получается: сливаем бензин с ракеты и уже получаем половину мощности.
Ещё полракеты занимает жидкий кислород. Хотел посчитать охлаждение и сжижение через теплоёмкость, но потом просто попалась цена в интернете 8200 рублей за тонну жидкого кислорода. Поскольку в себестоимости практически одно электричество получим (киловатт пусть будет 2 рубля):
300*8200*1000/2= 1 230 000 000 Вт ч
Опа, вторая половина. Уже КПД 0%. Это мы ещё ракету не считали.

А вот мы изобретём некий закидыватель полезных грузов на орбиту

То есть каким-то образом сообщим панелям кинетическую энергию в виде 10км/с:
3000*10000 2 /2 = 150000000000 Дж = 41 700 000 Вт ч
Вроде бы налицо КПД 5000%, но есть некоторые проблемы:
- достаточно высоко выбросить объект вряд ли получится, поэтому часть массы и энергии необходимо потратить на преодоление атмосферы;
- всё что выброшено с Земли по законам баллистики на Землю и вернётся, то есть ещё часть массы уйдёт на подъём перигея.
Пускай тонна ушла на теплозащиту. Посчитаем изменение орбиты:
ΔV=корень((3,986ּ10 14 /42000000)(1+2*6000000/(6000000+42000000)))=3441 м/с
Лучшие движки дают импульс 4500. Берём формулу Циолковского:
М конечная =2000/exp(4500/3500)=572 кг
А давайте возьмём электроракетные двигатели, импульс же раз в 10 больше и панели у нас есть. Да, но при имеющейся мощности панелей, тяга будет миллиньютоны, и на переход уйдут годы. А у нас до приземления всего пара часов.
В итоге: минус двигатель, баки, перегрузки - хорошо, если получим столько же.

А давайте поднимем панели на лифте

Идея в целом неплохая. Если просто поднять груз на высоту, то считаем изменение потенциальной энергии:
3000*9.81*36000000/3600 = 294 300 000 Вт ч
Как их сообщить грузу? Варианты передачи электричества:
- По самому лифту. Нетрудно представить потери и массу проводника длиной 36000 км. Сам бы лифт построить.
- Лазером – минус существенная часть массы на преобразование.
- Какое-то число панелей доставить традиционным способом и потом бесплатно поднять остальные на верёвочке. На мегаватт мощности надо 3 км 2 панелей. При этом на подъём груза понадобится две недели. Т.е. тот же мегаватт мы поднимем за год.

Прочие сложности

Свободно оперируя километрами панелей и эффективностью приёма солнечной энергии в космосе, редкие авторы рассказывают а как они собираются ориентировать панели на Солнце. ГСО стационарно только относительно Земли. Соответственно нужны механизмы, топливо.
Ещё нужны преобразователи, хранители, приёмники на Земле. Много ли потребителей у экватора? Высоковольтные линии через половину шарика. Если это всё помножить на не 100% вероятность выполнения задачи, спрашивается кому это вообще по силам?

Выводы:

- При существующих технологиях строить космическую солнечную энергостанцию нерентабельно.
- Даже, если поднять всё на космическом лифте, ко времени завершения строительства встанет вопрос как утилизировать выходящие из строя панели.
- Можно подогнать к Земле астероид и наделать панелей из него. Что-то мне подсказывает, что к тому времени как мы это сможем, уже не будет необходимости передавать энергию на Землю.

Однако дыма ведь без огня не бывает. И под кажущимися мирными намерениями могут скрываться совсем другие.
Например, строительство боевой космической станции на порядки проще и гораздо эффективнее:
- орбиту можно и нужно выбрать пониже;
- 100% попадание в приёмник необязательно;
- очень малое время от нажатия на кнопку пуск до поражения цели;
- отсутствие загрязнения местности.

Вот такие выводы. Возможно вычисления содержат ошибки. Традиционно предлагаю читателям их поправить.


Где будем размещать КСЭ? Вероятнее всего на ГСО. На других орбитах надо или приёмники по всей планете ставить, или кучу аккумуляторов с собой возить.

Не будем пока фантазировать, а разберёмся с имеющимися возможностями

РН «Ангара» с космодрома «Плесецк» донесёт до ГСО 3-4 тонны. Что можно в них засунуть? Очень приблизительно квадратов 100 панелей солнечных батарей. С постоянной направленностью на Солнце и КПД процентов 20 можно выжать по 300 Вт с квадрата. Предположим они будут деградировать по 5% в год (надеюсь никого не удивит, что солнечные панели в космосе портятся от радиации, микрометеоритов и пр.).
Давайте считать: (100*300*24*365*20)/2=2 628 000 000 Вт ч.
Чтобы осознать весь масштаб проблемы, пусть эти мегаватты без потерь добираются до Земли. Мощность внушает, но что если мы никуда не летим. В наличии 300 тонн керосина. Керосин почти бензин. Делает ещё одно допущение и берём обычный бензогенератор (200КВт за 50 литров в час).
200000*300000/50=1 200 000 000 Вт ч
Что получается: сливаем бензин с ракеты и уже получаем половину мощности.
Ещё полракеты занимает жидкий кислород. Хотел посчитать охлаждение и сжижение через теплоёмкость, но потом просто попалась цена в интернете 8200 рублей за тонну жидкого кислорода. Поскольку в себестоимости практически одно электричество получим (киловатт пусть будет 2 рубля):
300*8200*1000/2= 1 230 000 000 Вт ч
Опа, вторая половина. Уже КПД 0%. Это мы ещё ракету не считали.

А вот мы изобретём некий закидыватель полезных грузов на орбиту

То есть каким-то образом сообщим панелям кинетическую энергию в виде 10км/с:
3000*10000 2 /2 = 150000000000 Дж = 41 700 000 Вт ч
Вроде бы налицо КПД 5000%, но есть некоторые проблемы:
- достаточно высоко выбросить объект вряд ли получится, поэтому часть массы и энергии необходимо потратить на преодоление атмосферы;
- всё что выброшено с Земли по законам баллистики на Землю и вернётся, то есть ещё часть массы уйдёт на подъём перигея.
Пускай тонна ушла на теплозащиту. Посчитаем изменение орбиты:
ΔV=корень((3,986ּ10 14 /42000000)(1+2*6000000/(6000000+42000000)))=3441 м/с
Лучшие движки дают импульс 4500. Берём формулу Циолковского:
М конечная =2000/exp(4500/3500)=572 кг
А давайте возьмём электроракетные двигатели, импульс же раз в 10 больше и панели у нас есть. Да, но при имеющейся мощности панелей, тяга будет миллиньютоны, и на переход уйдут годы. А у нас до приземления всего пара часов.
В итоге: минус двигатель, баки, перегрузки - хорошо, если получим столько же.

А давайте поднимем панели на лифте

Идея в целом неплохая. Если просто поднять груз на высоту, то считаем изменение потенциальной энергии:
3000*9.81*36000000/3600 = 294 300 000 Вт ч
Как их сообщить грузу? Варианты передачи электричества:
- По самому лифту. Нетрудно представить потери и массу проводника длиной 36000 км. Сам бы лифт построить.
- Лазером – минус существенная часть массы на преобразование.
- Какое-то число панелей доставить традиционным способом и потом бесплатно поднять остальные на верёвочке. На мегаватт мощности надо 3 км 2 панелей. При этом на подъём груза понадобится две недели. Т.е. тот же мегаватт мы поднимем за год.

Прочие сложности

Свободно оперируя километрами панелей и эффективностью приёма солнечной энергии в космосе, редкие авторы рассказывают а как они собираются ориентировать панели на Солнце. ГСО стационарно только относительно Земли. Соответственно нужны механизмы, топливо.
Ещё нужны преобразователи, хранители, приёмники на Земле. Много ли потребителей у экватора? Высоковольтные линии через половину шарика. Если это всё помножить на не 100% вероятность выполнения задачи, спрашивается кому это вообще по силам?

Выводы:

- При существующих технологиях строить космическую солнечную энергостанцию нерентабельно.
- Даже, если поднять всё на космическом лифте, ко времени завершения строительства встанет вопрос как утилизировать выходящие из строя панели.
- Можно подогнать к Земле астероид и наделать панелей из него. Что-то мне подсказывает, что к тому времени как мы это сможем, уже не будет необходимости передавать энергию на Землю.

Однако дыма ведь без огня не бывает. И под кажущимися мирными намерениями могут скрываться совсем другие.
Например, строительство боевой космической станции на порядки проще и гораздо эффективнее:
- орбиту можно и нужно выбрать пониже;
- 100% попадание в приёмник необязательно;
- очень малое время от нажатия на кнопку пуск до поражения цели;
- отсутствие загрязнения местности.

Вот такие выводы. Возможно вычисления содержат ошибки. Традиционно предлагаю читателям их поправить.

Электроэнергия очень важный и необходимый ресурс нынешнего времени. Источники получения многообразны, а сферы применения обширны. Однако существует область применения электроэнергии, намного отдалённая, нежели чем край Земли – это космос. Источником электроэнергии в космосе является солнечная батарея.

Идея применять энергию солнца за пределами земли появилась больше полувека назад, во время первых запусков искусственных спутников земли. В тот период, профессор Николай Степанович Лидоренко обосновал необходимость и возможность применения бесконечных источников энергии на космических аппаратах .

Данный вид энергии получают с помощью солнечных модулей. Большим помощником в этом деле является сам космос, так как солнечные лучи, так необходимые для процесса фотосинтеза в солнечных модулях , в избытке имеются в космическом пространстве, и нет никаких помех для их потребления.

Минусом использования солнечных батарей на околоземной орбите, может служить влияние радиации на материал изготовления фотопластин. Благодаря такому негативному влияния происходит изменение структуры солнечных элементов, что влечет снижение выработки электроэнергии.

В научных лабораториях всей земли, в настоящее время, происходит схожая задача – совершенствование и упрощение получения электроэнергии от солнца не только для использования в космосе, но и передачи ее на землю. Только не в масштабах отдельного дома или города, а в размерах всей планеты.

Суть этой работы состоит в том, чтобы разобраться в принципах получения электроэнергии от солнца, сделать предположения по их совершенствованию. Изучить возможность применения солнечных батарей в космосе, рассмотреть современные достижениях научных школ по данной проблеме, собрать в домашних условиях солнечную батарею, провести с ней эксперименты.

Солнечную батарею можно сделать в домашних условиях, используя фотодиоды.

Используя солнечную батарею можно собрать простейшие схемы, включение светодиода, электронных часов.

Использование солнечной батареи промышленного произвосдтва для создания модели “луноход 1”

Несмотря на то, что уже много лет солнечные батареи являются одним из источников питания на земле и единственным источником питания в космосе, остается ряд неразрешенных вопросов. Актуальными являются утилизация отработанных солнечных батарей, создание орбитальной солнечной электростанции, способы передачи электроэнергии из космоса на землю.

На мой взгляд, в качестве перспективного материала для создания солнечных батарей являются органические соединения – красители.

Сотрудники Уральского Федерального Университета имени первого Президента России Б. Н. Ельцина занимаются разработкой и синтезированием органических красителей для солнечных батарей. Выпущен ряд работ, показывающий перспективность данных исследований . Рассмотрев несколько красителей, визуально определил наиболее яркий при свечении. (Жидкости при дневном свете и освещенные синим светодиодом).

Использование красителей, в какой то мере решает вопросы по утилизации и по доставке их в космос с последующим использованием, но минусом данной теории является то, что данные материалы подвержены воздействию агрессивного космоса и имеют низкий КПД по сравнению с солнечными батареями на кремнии.

Физика наука экспериментальная, и благодаря данному проекту, легко убедится, что для совершенствования преобразования солнечной энергии в электрическую необходимо более глубоко исследовать красители.