Для канализации        11.10.2019   

Ртуть в чистом виде. Применение ртути в современной промышленности

Ртуть – это единственный из известных человеку металлов, который остается жидким при комнатной температуре. Внешне ртуть напоминает жидкое серебро; при попадании на плоскую поверхность капля ртути моментально рассыпается на сотни мельчайших шариков, которые словно отталкиваются друг от друга и разбегаются в разные стороны.


Ртуть – очень редкий элемент. В целом в природе ртуть образуется в процессе окисления киновари и разложения образующегося сульфата; во время ; путем выделения из водных растворов. В земной коре ртуть рассеяна, а в результате осаждения из горячих подземных вод она образует ртутные руды.

На сегодняшний день известно 35 ртутьсодержащих минералов. Некоторое количество ртути содержится в морской воде, в сланцах и глинах.

Из истории вопроса

Уже за две тысячи лет до нашей эры в Древней Индии и Древнем Китае умели добывать самородную ртуть. Ртуть, содержащую киноварь уже тогда использовали в лечении и косметологии. В ходе экспериментов древних ученых нагретая киноварь оседала на металле в виде «жидкого серебра».


Алхимики уделяли ртути огромное значение – считалось, что после того, как ртуть затвердевает, она может превращаться в золото. Впервые твердую ртуть удалось получить Ломоносову – он использовал для этого смесь снега и концентрированной азотной кислоты.

Где используют ртуть?

Ртуть незаменима при изготовлении различных метрологических приборов – , термометров, полярографов, вакуумных насосов. Ртуть является важным элементом при производстве ртутных ламп, выпрямителей. Кроме того, этот металл активно применяют в химической промышленности и металлургии.

Ртуть – катализатор при различных реакциях, важный элемент при амальгамации других металлов. Ее применяют в медицине, промышленности и сельском хозяйстве. Именно ртутное покрытие позволяет выпускать зеркала, без которых нам не обойтись.

Основные свойства ртути

Это серебристый, тяжелый, жидкий металл, который при комнатной температуре испаряется. Чем выше температура воздуха, тем быстрее происходит испарение. Ртуть (химическая формула Hg) взаимодействует с серебром, золотом, цинком, смачивая их и образуя амальгамы. Ртуть кипит при температуре +357.25 С.


По степени опасности относится к первому классу и является чрезвычайно мощным загрязнителем окружающей среды – воздуха, почвы, воды. Ртуть и ее соединения крайне токсичны и опасны для организма человека.

Опасность ртути

Попадая в организм через легкие, пары ртути вызывают острые и хронические отравления. Ртуть поражает органы дыхания, печень, центральную нервную систему, желудочно-кишечный тракт, сердечно-сосудистую систему, прочие внутренние органы. Симптомы токсичного поражения проявляются через 8-24 часа.

У пострадавшего наблюдается слабость, апатия, эмоциональная неустойчивость, головокружение, головная боль. Ослабляется внимание и память, появляется потливость, боли при глотании, повышается температура, начинаются боли в желудке, тошнота, рвота, повышается температура, появляется тремор рук.

При серьезном отравлении не исключен летальный исход. В организм ртуть проникает чаще всего через легкие – человек вдыхает опасные пары, которые не имеют запаха.

Меры предосторожности и способы хранения

При работе с ртутью нужно использовать противогазы или фильтрующие респираторы. Если произошло ртутное загрязнение, проводятся меры по демеркуризации. Видимые количества металлической ртути устраняют с загрязненных поверхностей, после этого осуществляют химическую обработку при помощи химических реагентов.


Ртуть, которую используют в промышленности, хранят в стальных баллонах емкостью не более 35 кг, в керамических или стеклянных баллонах емкостью 500 мл с толстыми стенами, металлической гофрированной пробкой с прокладкой из пластмассы. В каждом баллоне помещается 5 кг ртути.

В лабораториях ртуть хранят в запаянных стеклянных ампулах по 30-40 мл в каждой, которые, опускают в сварные стальные коробки. Ртуть нельзя хранить в открытой посуде, а также в бюксах, колбах и прочей химической посуде с тонкими стенками.

Ртуть (лат. Hydrargyrum), Hg, химический элемент II группы периодической системы Менделеева, атомный номер 80, атомная масса 200,59; серебристо-белый тяжелый металл, жидкий при комнатной температуре. В природе Ртуть представлена семью стабильными изотопами с массовыми числами: 196 (0,2%), 198 (10,0%), 199 (16,8%), 200 (23,1%), 201 (13,2%), 202 (29,8%), 204 (6,9%).

Историческая справка. Самородная Ртуть была известна за 2000 лет до н. э. народам Древней Индии и Древнего Китая. Ими же, а также греками и римлянами применялась киноварь (природная HgS) как краска, лекарственное и косметическое средство. Греческий врач Диоскорид (1 в. н. э.), нагревая киноварь в железном сосуде с крышкой, получил Ртуть в виде паров, которые конденсировались на холодной внутренней поверхности крышки. Продукт реакции был назван hydrargyros (от греч. hydor - вода и argyros - серебро), то есть жидким серебром, откуда произошли латинское названия hydrargyrum, а также argentum vivum - живое серебро. Последнее сохранилось в названиях Ртути quicksilver (англ.) и Quecksilber (нем.). Происхождение русского названия Ртути не установлено. Алхимики считали Ртуть главной составной частью всех металлов. "Фиксация" Ртути (переход в твердое состояние) признавалась первым условием ее превращения в золото. Твердую Ртуть впервые получили в декабре 1759 года петербургские академики И. А. Браун и М. В. Ломоносов. Ученым удалось заморозить Ртуть в смеси из снега и концентрированной азотной кислоты. В опытах Ломоносова отвердевшая Ртуть оказалась ковкой, как свинец. Известие о "фиксации" Ртути произвело сенсацию в ученом мире того времени; оно явилось одним из наиболее убедительных доказательств того, что Ртуть - такой же металл, как и все прочие.

Ртуть принадлежит к числу весьма редких элементов, ее среднее содержание в земной коре (кларк) близко к 4,5·10 -6 % по массе. Приблизительно в таких количествах она содержится в изверженных горных породах. Важную роль в геохимии Ртути играет ее миграция в газообразном состоянии и в водных растворах. В земной коре Ртуть преимущественно рассеяна; осаждается из горячих подземных вод, образуя ртутные руды (содержание Ртути в них составляет несколько процентов). Известно 35 ртутных минералов; главнейший из них - киноварь HgS.

В биосфере Ртуть в основном рассеивается и лишь в незначительных количествах сорбируется глинами и илами (в глинах и сланцах в среднем 4·10 -5 %). В морской воде содержится 3·10 -9 % Ртути.

Самородная Ртуть, встречающаяся в природе, образуется при окислении киновари в сульфат и разложении последнего, при вулканических извержениях (редко), гидротермальным путем (выделяется из водных растворов).

Ртуть - единственный металл, жидкий при комнатной температуре. Твердая Ртуть кристаллизуется в ромбической сингонии, а = 3,463Å, с = 6,706Å; плотность твердой Ртути 14,193 г/см 3 (-38,9 °С), жидкой 13,52 г/см 3 (20 °С), атомный радиус 1,57Å, ионный радиус Hg 2+ 1,10Å; t пл -38,89 °С; t кип 357,25 °С; удельная теплоемкость при 0°С 0,139 кДж/(кг·К) , при 200°С 0,133 кДж/(кг·К) ; температурный коэффициент линейного расширения 1,826·10 -4 (0-100 °С); теплопроводность 8,247 Вт/(м·К) (при 20 °С); удельное электросопротивление при 0°С 94,07·10 -8 ом·м (94,07·10 -6 ом·см). При 4,155 К Ртуть становится сверхпроводником. Ртуть диамагнитна, ее атомная магнитная восприимчивость равна -0,19·10 -6 (при 18 °С).

Конфигурация внешних электронов атома Hg 5d 10 6s 2 , в соответствии с чем при химических реакциях образуются катионы Hg 2+ и Hg 2 2+ . Химическая активность Ртути невелика. В сухом воздухе (или кислороде) она при комнатной температуре сохраняет свой блеск неограниченно долго. С кислородом дает два соединения: черный оксид (I) Hg 2 O и красный оксид (II) HgO. Hg 2 O появляется в виде черной пленки на поверхности Ртути при действии озона. HgO образуется при нагревании Hg на воздухе (300-350 °С), а также при осторожном нагревании нитратов Hg(NO 3) 2 или Hg 2 (NO 3) 2 . Гидрооксид Ртути практически не образуется. При взаимодействии с металлами, которые Ртуть смачивает, образуются амальгамы. Из сернистых соединений важнейшим является HgS, которую получают растиранием Hg с серным цветом при комнатной температуре, а также осаждением растворов солей Hg 2+ сероводородом или сульфидом щелочного металла. С галогенами (хлором, иодом) Ртуть соединяется при нагревании, образуя почти недиссоциирующие, в большинстве ядовитые соединения типа HgX 2 . В соляной и разбавленной серной кислотах Ртуть не растворяется, но растворима в царской водке, азотной и горячей концентрированной серной кислотах.

Почти все соли Hg 2+ плохо растворимы в воде. К хорошо растворимым относится нитрат Hg(NO 3) 2 . Большое значение имеют хлориды Ртути: Hg 2 Cl 2 (каломель) и HgCl 2 (сулема). Известны соли окисной Ртути цианистой и роданистой кислот, а также ртутная соль гремучей кислоты Hg(ONC) 2 так называемых гремучая ртуть. При действии аммиака на соли образуются многочисленные комплексные соединения, например HgCl-2NH 3 (плавкий белый преципитат) и HgNH 2 Cl (неплавкий белый преципитат). Применение находят ртутьорганические соединения.

Ртутные руды (или рудные концентраты), содержащие Ртуть в виде киновари, подвергают окислительному обжигу

HgS + О 2 = Hg + SO 2 .

Обжиговые газы, пройдя пылеуловительную камеру, поступают в трубчатый холодильник из нержавеющей стали или монель-металла. Жидкая Ртуть стекает в железные приемники. Для очистки сырую Ртуть пропускают тонкой струйкой через высокий (1-1,5 м) сосуд с 10%-ной НNО 3 , промывают водой, высушивают и перегоняют в вакууме.

Возможно также гидрометаллургическое извлечение Ртути из руд и концентратов растворением HgS в сернистом натрии с последующим вытеснением Ртути алюминием. Разработаны способы извлечения Ртуть электролизом сульфидных растворов.

Ртуть широко применяется при изготовлении научных приборов (барометры, термометры, манометры, вакуумные насосы, нормальные элементы, полярографы, капиллярные электрометры и других), в ртутных лампах, переключателях, выпрямителях; как жидкий катод в производстве едких щелочей и хлора электролизом, в качестве катализатора при синтезе уксусной кислоты, в металлургии для амальгамации золота и серебра, при изготовлении взрывчатых веществ; в медицине (каломель, сулема, ртутьорганические и других соединения), в качестве пигмента (киноварь), в сельском хозяйстве (органические соединения Ртути) в качестве протравителя семян и гербицида, а также как компонент краски морских судов (для борьбы с обрастанием их организмами). Ртуть и ее соединения токсичны, поэтому работа с ними требует принятия необходимых мер предосторожности.

Содержание Ртути в организмах составляет около 10 -6 %. В среднем в организм человека с пищей ежесуточно поступает 0,02-0,05 мг Ртути. Концентрация Ртути в крови человека составляет в среднем 0,023 мкг/мл, в моче - 0,1-0,2 мкг/мл. В связи с загрязнением воды промышленного отходами в теле многих ракообразных и рыб концентрация Ртути (главным образом в виде ее органических соединений) может значительно превышать допустимый санитарно-гигиенический уровень. Ионы Ртути и ее соединения, связываясь с сульфгидрильными группами ферментов, могут инактивировать их. Попадая в организм, Ртуть влияет на поглощение и обмен микроэлементов - Cu, Zn, Cd, Se. В целом биологическая роль Ртуть в организме изучена недостаточно. Отравления Ртутью и ее соединениями возможны на ртутных рудниках и заводах, при производстве некоторых измерительных приборов, ламп, фармацевтических препаратов, инсектофунгицидов и других.

Основную опасность представляют пары металлической Ртути, выделение которых с открытых поверхностей возрастает при повышении температуры воздуха. При вдыхании Ртуть попадает в кровь. В организме Ртуть циркулирует в крови, соединяясь с белками; частично откладывается в печени, в почках, селезенке, ткани мозга и др. Токсическое действие связано с блокированием сульфгидрильных групп тканевых белков, нарушением деятельности головного мозга (в первую очередь, гипоталамуса). Из организма Ртуть выводится через почки, кишечник, потовые железы и др.

Острые отравления Ртутью и ее парами встречаются редко. При хронических отравлениях наблюдаются эмоциональная неустойчивость, раздражительность, снижение работоспособности, нарушение сна, дрожание пальцев рук, снижение обоняния, головные боли. Характерный признак отравления - появление по краю десен каймы сине-черного цвета; поражение десен (разрыхленность, кровоточивость) может привести к гингивиту и стоматиту. При отравлениях органических соединениями Ртути (диэтилмеркурфосфатом, диэтилртутью, этилмеркурхлоридом) преобладают признаки одновременного поражения центральной нервной (энцефалополиневрит) и сердечно-сосудистой систем, желудка, печени, почек.

Ртуть

РТУТЬ -и; ж. Химический элемент (Hg), жидкий тяжёлый металл серебристо-белого цвета (широко применяется в химии и электротехнике). Живой, как ртуть. (очень подвижный).

Гремучая ртуть Взрывчатое вещество в виде белого или серого порошка.

ртуть

(лат. Hydrargyrum), химический элемент II группы периодической системы. Серебристый жидкий металл (отсюда латинское название; от греческого hýdōr - вода и árgyros - серебро). Плотность при 20°C 13,546 г/см 3 (тяжелее всех известных жидкостей), t пл –38,87°C, t кип 356,58°C. Пары ртути при высокой температуре и при электрическом разряде излучают голубовато-зелёный свет, богатый ультрафиолетовыми лучами. Химически стойка. Основной минерал - киноварь HgS; встречается также ртуть самородная. Используется при изготовлении термометров, манометров, газоразрядных приборов, в производстве хлора и гидроксида натрия (как катод). Сплавы ртути с металлами - амальгамы. Ртуть и многие её соединения ядовиты.

РТУТЬ

РТУ́ТЬ (лат. Hydrargyrum), Hg (читается «гидраргирум»), химический элемент с атомным номером 80, атомная масса 200,59.
Природная ртуть состоит из смеси семи стабильных нуклидов: 196 Hg (содержание 0,146% по массе), 198 Hg (10,02%), 199 Hg (16,84%), 200 Hg (23,13%), 201 Hg (13,22%), 202 Hg (29,80%) и 204 Hg (6,85%). Радиус атома ртути 0,155 нм. Радиус иона Hg + - 0,111 нм (координационное число 3), 0,133 нм (координационное число 6), иона Hg 2+ - 0,083 нм (координационное число 2), 0,110 нм (координационное число 4), 0,116 нм (координационное число 6) или 0,128 нм (координационное число 8). Энергии последовательной ионизации нейтрального атома ртути равны 10,438, 18,756 и 34,2 эВ. Расположена во IIВ группе, 6 периода периодической системы. Конфигурация внешнего и предвнешнего электронных слоев 5s 2 p 6 d 10 6s 2 . В соединениях проявляет степени окисления +1 и +2. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 1,9.
История открытия
Ртуть известна человечеству с древнейших времен. Обжиг киновари (см. КИНОВАРЬ) HgS, приводящий к получению жидкой ртути, использовали еще в 5 в. до н. э. в Междуречье (см. МЕСОПОТАМИЯ) . Использование киновари и жидкой ртути описано в древних документах Китая, Ближнего Востока. Первое подробное описание получения ртути из киновари описано Теофрастом (см. ТЕОФРАСТ) около 300 лет до н. э.
В древности ртуть использовали для добычи золота (см. ЗОЛОТО (химический элемент)) из золотых руд. Этот способ основан на ее способности растворять многие металлы, образуя жидкие или легкоплавкие амальгамы (см. АМАЛЬГАМА) . При прокаливании амальгамы золота летучая ртуть испаряется, золото остается. Во второй половине 15 в в Мексике применяли амальгамирование для извлечения из руды серебра (см. СЕРЕБРО) .
Алхимики считали ртуть составной частью всех металлов, полагая, что изменением ее содержания можно осуществить превращение ртути в золото. Только в 20 в. физики установили, что в процессе ядерной реакции атомы ртути действительно превращаются в атомы золота. Но такой способ чрезвычайно дорог.
Жидкая ртуть - очень подвижная жидкость. Алхимики называли ртуть «меркурием» по имени римского бога Меркурия, славившегося своей быстротой в перемещении. В английском, французском, испанском и итальянском языках для ртути используется название «mercury». Современное латинское название происходит от греческих слов «хюдор» - вода и «аргирос» - серебро, т. е. «жидкое серебро».
Ртутные препараты использовали в медицине в средние века (ятрохимия (см. ЯТРОХИМИЯ) ).
Нахождение в природе
Редкий рассеянный элемент. Содержание ртути в земной коре 7,0·10 –6 % по массе. В природе ртуть встречается в свободном состоянии. Образует более 30 минералов. Основной рудный минерал киноварь. Минералы ртути в виде изоморфных примесей встречаются в кварце, халцедоне, карбонатах, слюдах, свинцово-цинковых рудах. Желтая модификация HgO встречается в природе в виде минерала монтроидита. В обменных процессах литосферы, гидросферы, атмосферы участвует большое количество ртути. Содержание ртути в рудах от 0,05 до 6-7%.
Получение
Первоначально ртуть получали из киновари (см. КИНОВАРЬ) , помещая ее куски в вязанки хвороста и обжигая киноварь в кострах.
В настоящее время ртуть получают окислительно-восстановительным обжигом руд или концентратов при 700-800 о С в печах кипящего слоя, трубчатых или муфельных. Условно процесс может быть выражен:
HgS + O 2 = Hg + SO 2
Выход ртути при таком способе составляет около 80%. Более эффективен способ получения ртути путем нагревания руды с Fe (см. ЖЕЛЕЗО) и CaO:
HgS + Fe = Hg – + FeS,
4HgS + 4CaO = 4Hg – + 3CaS + CaSO 4 .
Особо чистую ртуть получают электрохимическим рафинированием на ртутном электроде. При этом содержание примесей составляет от 1·10 –6 до 1·10 –7 %.
Физические и химические свойства
Ртуть - серебристо-белый металл, в парах бесцветный. Единственный жидкий при комнатной температуре металл. Температура плавления –38,87°C, кипения 356,58°C. Плотность жидкой ртути при 20°C 13,5457 г/см 3 , твердой ртути при –38,9°C - 14,193 г/см 3 .
Твердая ртуть - бесцветные кристаллы октаэдрической формы, существующая в двух кристаллических модификациях. «Высокотемпературная» модификация обладает ромбоэдрической решеткой a-Hg, параметры ее элементарной ячейки (при 78 К) а= 0,29925 нм, угол b = 70,74 о. Низкотемпературная модификация b-Hg обладает тетрагональной решеткой (ниже 79К).
С использованием ртути голландский физик и химик Х.Камерлинг-Оннес (см. КАМЕРЛИНГ-ОННЕС Хейке) в 1911 впервые наблюдал явление сверхпроводимости (см. СВЕРХПРОВОДИМОСТЬ) . Температура перехода a-Hg в сверхпроводящее состояние 4,153К, b-Hg - 3,949К. При более высоких температурах ртуть ведет себя как диамагнетик (см. ДИАМАГНЕТИК) . Жидкая ртуть не смачивает стекло и практически не растворяется в воде (в 100 г воды при 25°C растворяется 6·10 –6 г ртути).
Стандартный электродный потенциал пары Hg 2+ 2 /Hg 0 = +0.789 B, пары Hg 2+ /Hg 0 = +0.854B, пары Hg 2+ /Hg 2+ 2 = +0.920B. В неокисляющих кислотах ртуть не растворяется с выделением водорода (см. ВОДОРОД) . (см. КИСЛОРОД)
Кислород (см. КИСЛОРОД) и сухой воздух при обычных условиях ртуть не окисляют. Влажный воздух и кислород при ультрафиолетовом облучении или электронной бомбардировке окисляют ртуть с поверхности с образованием оксидов.
Ртуть окисляется кислородом воздуха при температуре выше 300°C, образуя оксид ртути HgO красного цвета:
2Hg + O 2 = 2HgO.
Выше 340°C этот оксид разлагается на простые вещества.
При комнатной температуре ртуть окисляется озоном (см. ОЗОН) .
Ртуть не реагирует при нормальных условиях с молекулярным водородом, но с атомарным водородом образует газообразный гидрид HgH. Ртуть не взаимодействует с азотом, фосфором, мышьяком, углеродом, кремнием, бором, германием.
С разбавленными кислотами ртуть не реагирует, но растворяется в царской водке (см. ЦАРСКАЯ ВОДКА) и в азотной кислоте. Причем, в случае с кислотой продукт реакции зависит от концентрации кислоты и соотношения ртути и кислоты. При избытке ртути, на холоду, протекает реакция:
6Hg + 8HNO 3 разбавл. = 3Hg 2 (NO 3) 2 + 2NO + 4H 2 O.
При избытке кислоты:
3Hg + 8HNO 3 = 3Hg(NO 3) 2 + 2NO + 4H 2 O.
С галогенами (см. ГАЛОГЕНЫ) ртуть активно взаимодействует с образованием галогенидов (см. ГАЛОГЕНИДЫ) . При реакциях ртути с серой (см. СЕРА) , селеном (см. СЕЛЕН) и теллуром (см. ТЕЛЛУР) возникают халькогениды (см. ХАЛЬКОГЕНИДЫ) HgS, HgSe, HgTe. Эти халькогениды праrтически не растворимы в воде. Например, значение ПР HgS = 2·10 –52 . Сульфид ртути растворяется только в кипящей HCl, царской водке (при этом образуется комплекс 2–) и в концентрированных растворах сульфидов щелочных металлов:
HgS + K 2 S = K 2 .
Сплавы ртути с металлами называют амальгамами (см. АМАЛЬГАМА) . Стойкие к амальгамированию металлы - железо (см. ЖЕЛЕЗО) , ванадий (см. ВАНАДИЙ) , молибден (см. МОЛИБДЕН) , вольфрам (см. ВОЛЬФРАМ) , ниобий (см. НИОБИЙ) и тантал (см. ТАНТАЛ (химический элемент)) . Со многими металлами ртуть образует интерметаллические соединения меркуриды.
Ртуть образует два оксида: оксид ртути(II) HgO и неустойчивый на свету и при нагревании оксид ртути(I) Hg 2 O (черные кристаллы).
HgO образует две модификации - желтую и красную, отличающиеся размерами кристаллов. Красная модификация образуется при добавлении к раствору соли Hg 2+ щелочи:
Hg(NO 3) 2 + 2NaOH = HgOЇ + 2NaNO 3 + H 2 O.
Желтая форма химически более активна, при нагревании краснеет. Красная форма при нагревании чернеет, но приобретает прежний цвет при охлаждении.
При добавлении щелочи к раствору соли ртути(I) образуется оксид ртути (I) Hg 2 O:
Hg 2 (NO 3) 2 + 2NaOH = Hg 2 O + H 2 O + 2NaNO 3 .
На свету Hg 2 O распадается на ртуть и HgO, давая осадок черного цвета.
Для соединений ртути(II) характерно образование устойчивых комплексных соединений (см. КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ) :
2KI + HgI 2 = K 2 ,
2KCN + Hg(CN) 2 = K 2 .
Соли ртути(I) содержат группировку Hg 2 2+ со связью –Hg–Hg–. Получают эти соединения, восстанавливая соли ртути(II) ртутью:
HgSO 4 + Hg + 2NaCl = Hg 2 Cl 2 + Na 2 SO 4 ,
HgCl 2 + Hg = Hg 2 Cl 2 .
В зависимости от условий, соединения ртути(I) могут проявлять как окислительные, так и восстановительные свойства:
Hg 2 Cl 2 + Cl 2 = 2HgCl 2 ,
Hg 2 Cl 2 + SnCl 2 = 2Hg + SnCl 4 . (см. ПЕРОКСИДНЫЕ СОЕДИНЕНИЯ)
Пероксид (см. ПЕРОКСИДНЫЕ СОЕДИНЕНИЯ) HgO 2 - кристаллы; неустойчив, взрывается при нагревании и ударе.
Применение
Ртуть используют для изготовления катодов при электрохимическом получении едких щелочей и хлора, а также для полярографов, в диффузионных насосах, барометрах и манометрах; для определения чистоты фтора и его концентрации в газах. Парами ртути наполняют колбы газоразрядных ламп (ртутных и люминесцентных) и источников УФ излучения. Ртуть применяют при нанесении золотых покрытий и при добычи золота из руды. (см. )
Сулема (см. ) - важнейший антисептик, применяют при разбавлениях 1:1000. Оксид ртути (II), киноварь HgS применяются для лечения глазных и кожных и венерических заболеваний. Киноварь также используют для приготовления чернил и красок. В древности из киновари готовили румяна. Каломель (см. КАЛОМЕЛЬ) используется в ветеринарии в качестве слабительного средства.
Физиологическое действие
Ртуть и ее соединения высокотоксичны. Пары и соединения ртути накапливаясь в организме человека, сорбируются легкими, попадают в кровь, нарушают обмен веществ и поражают нервную систему. Признаки ртутного отравления проявляются уже при содержании ртути в концентрации 0.0002–0.0003 мг/л. Пары ртути фитотоксичны, ускоряют старение растений.
При работе с ртутью и ее соединениями следует предотвращать ее попадание в организм через дыхательные пути и кожу. Хранят в закрытых сосудах.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "ртуть" в других словарях:

    Ртуть, и … Русский орфографический словарь

    Ртуть/ … Морфемно-орфографический словарь

    РТУТЬ, Hydrargyrum (от греч. hydor вода и argyros серебро), Mercurium, Hydrargyrum VІvum, s. metallicum, Mercurius VІvus, Argentum VІvum, серебристо белый жидкий металл, симв. Hg, ат. в. 200,61; уд. в. 13,573; ат. объем 15,4; t° замерз.… … Большая медицинская энциклопедия

Ртуть, благодаря своим удивительным свойствам, занимает особое место среди других металлов и широко используется в науке и технике.

Свойство ртути оставаться в жидком состоянии в интервале температур от 357,25 до -38,87° С является уникальным. При невысо­ких температурах ртуть инертна по отношению ко многим агрессив­ным жидкостям и газам, в том числе и к кислороду воздуха. Она практически не взаимодействует с концентрированной серной и соляной кислотами; ее используют при работе, например, с такими ядови­тыми и агрессивными веществами, как бороводороды.

Ртуть применяется в электротехнике, металлургии, в медицине, химии, в строительном деле, сельском хозяйстве и многих других областях; особенно значительна ее роль в лабораторной практике.

Общеизвестно применение ртути в манометрах, вакуумметрах, термометрах, в многочисленных конструкциях затворов, прерывате­лей, высоко вакуумных насосах, всевозможных реле, терморегулиру­ющих устройствах и пр.

Металлическую ртуть используют в качестве балластной, термостатирующей и уплотняющей жидкости, а пары ртути - как защитную атмосферу при нагревании металлов.

Ртуть широко применяют при электрохимических исследованиях и нормальных элементах Кларка и Вестона, обладающих стабильными значениями ЭДС, в электрометрах Липпмана, которые исполь­зуются для изучения строения двойного электрического слоя, зави­симости коэффициента трения от потенциала, межфазного поверх­ностного натяжения, смачиваемости и других явлений, в ртутно-сульфатных, ртутно-фосфатных, ртутно-окисных и ртутно-иодистых электродах сравнения, применяемых для измерения элект­родных потенциалов.

В 1922 г. Я. Гейровский разработал полярографический метод анализа с применением ртутного капельного электрода. Этим методом можно определять малые концентрации веществ (10 -3 - 10 -4 моль/л), причем замена в полярографическом анализе ртути амальгамами, использование метода «амальгамной полярографии с накоплением», позволяют расширить возможности полярографии и повысить точность измерения на 3-4 порядка.

Ртуть и амальгамы успешно используют при амперометрическом и. потенцпометрическом титровании кулонометрическом ана­лизе, а также при электролизе на ртутном катоде.

Ртуть часто применяют в качестве вспомогательного вещества при изучении металлических систем. Например, с ее помощью были уточнены диаграммы состояния бинарных сплавов никель - цинк, никель - олово, железо - марганец, хром - цинк и др.Она при­меняется в качестве растворителя для получения полупроводнико­вых материалов, в частности, для выращивания при низких темпера­турах из насыщенных ртутных растворов a-олова монокристаллов серого олова. Пластинки, изготовленные из серого олова, обладают большой чувствительностью к инфракрасному излучению - позволяют обнаруживать электромагнитные волны длиною до 15 мкм.

Ртутные контакты используют для прецизионного определения удельного сопротивления кремния.

С помощью ртути изучают явления смачивания, пластификации и охрупчивания цинка, олова, меди, свинца, золота, латуни, алюминия, стали и титановых сплавов металловедении ртуть применяют для травления, для изучения диффузии.

Ее широко применяют для определения пористости активированных углей, силикагелей, керамических изделий и металлических покрытий. Известны поромегры, работающие при давлениях до 3500 aт и позволяющие определять поры диаметром до несколь­ких А.

Ртуть используют также для точной калибровки мерной посуды, бюреток, пипеток и пикнометров, для определения диаметра капиллярных трубок, в качестве компрессионной жидкости при опре­делении газов в биологических жидкостях, в газоанализаторах различных систем, волюмометрах и т. д.

Сравнительно низкое давление пара при температурах, превыша­ющих 500° С, дает возможность применять ртуть в качестве рабочего тела в энергетических установках, использующих для нагревания тепло, выделяющееся при радиоактивном распаде, а также в мощ­ных бинарных установках промышленного типа, в которых для генерации электрической энергии на первой ступени используют ртутно-паровые турбины, а на второй - турбины, работающие на водяном паре 46-Б2 . Коэффициент полезного действия бинарных установок превосходит КПД любых тепловых двигателей и даже таких совершенных конструкций, на двигатели внутреннего сгорания.

В ядерных реакторах, наряду с водою все шире начинают при­менять для отвода тепла жидкометаллические теплоносители, вклю­чая и ртуть. При этом значительно повышается КПД атомных установок и устраняются трудности, связанные с применением воды и водяного пара под высоким давлением.

Ртуть в качестве теплоносителя часто используют в химической промышленности, например, в процессе сульфирования нафталина, для дистилляции 2-нафтола, для разгонки смазочных масел, при получении ангидрида фталевой кислоты, при проведении крекинг-процесса и пр. В этом случае создается возможность про­водить процессы при температурах до 800° С и одновременно обеспе­чивать равномерный нагрев всей реакционной массы. Ртуть также может служить катализатором, например, при получении уксусной кислоты.

В металлургии известен способ литья по расправляемым ртутным моделям. Отдельные части модели, изготовленные из заморо­женной ртути, легко свариваются в результате соприкосновения и небольшого сдавливания, что облегчает изготовление составных и сложных моделей; при последующем плавлении моделей из твердой ртути ее объем меняется очень незначительно, что позволяет вводить весьма небольшие допуски на размеры отливок. Таким спо­собом можно получать прецизионные отливки исключительно слож­ных конфигураций и, в частности, детали для газовых турбин самолетов.

Небольшое давление паров ртути при обычных температурах было использовано также при создании различных ртутных ламп, среди которых первое место принадлежит лампам дневного света (ЛД, ЛДЦ, ЛБ, ЛХБ, ЛТБ и пр.).

Ртутные лампы низкого давления (-10 -3 мм рт. ст. при 20- 40° С), изготовленные из кварцевого или увиолевого стекла, явля­ются источниками резонансного излучения с длиною волны, равной 2537 и 1849 А. Они применяются в качестве бактерицидных и люми­несцентных ламп. Бактерицидные ртутные лампы (БУВ-15, БУВ-30 и др.) работают в коротковолновой области ультрафиолетового излу­чения и применяются для стерилизации пищевых продуктов, воды, воздуха помещений и др. Люминесцентные ртутные лампы (ЭУВ-15, ЭУВ-30) работают в средневолновой части спектра ультрафиолето­вых излучений и предназначены для лечебных целей.

Ртутные лампы низкого давления используют также для изучения спектров комбинационного рассеяния, для облучения ультрафиолетовыми лучами шкал различных приборов, ручек указа­телей н других приспособлений, покрытых светосоставом.

В ртутных лампах высокого давления (давление паров ртути 0,3-12 aт) интенсивное излучение происходит в ультрафиолетовой и синефиолетовой части спектра. Они используются для светокопиро­вальных работ (ИГАР-2), для освещения производственных поме­щений, улиц и автомагистралей (ДРЛ); для физиотерапии, спектроскопии и люминесцентного анализа, в фотохимии; для ко­пировальных работ используют также ртутно-кварцевые лампы РКС-2,5.

Ртутные лампы сверхвысокого давления (давление паров ртути в них достигает десятков и даже сотен атмосфер) работают при температурах до 1000° С.

Сочетание, в таких лампах светящейся дуги с огромной световой отдачей и яркостью позволяет использовать ртутные лампы сверхвысокого давления в прожекторах, спектральных приборах и в проекционной аппаратуре. Интенсивное излучение в фиолетовой и синей части спектра таких ламп используют для фотосинтеза, в люминес­центной микроскопии, для декоративных целей (светящиеся краски) и т. д.

Для повышения интенсивности излучения в желаемой области спектра в ртутных лампах часто вместо металлической ртути исполь­зуют амальгамы цинка, кадмия и других металлов или добавляют в ртутные лампы галлоидные соединения таких металлов, как тал­лий, .натрий, индий и др.

Наряду с ртутными лампами не утратили своего значения также ртутные выпрямители электрического тока, которые не имеют себе равных по долговечности и простоте эксплуатации. Лишь в последнее время в технологии получения некоторых химических веществ, например, при производстве хлора и каустической соды, ртутные вентили начинают постепенно вытесняться кремниевыми выпрямителями, позволяющими использовать для электролиза вы­прямленный ток до 25 000 а.

Ртуть находит также применение в электронной промышленности. Пары ртути используют в газотронах (ГР1-0.25/1.5; ВГ-236, ВГ-129), применяемых в передатчиках большой и средней мощности, в газо­наполненных тиратронах и триодах. Ртуть применяют в ультразву­ковых генераторах с пьезокварцевыми датчиками, в генераторах для высокочастотного нагрева и в других электронных прибо­рах.

Ртуть широко применяют в вакуумной технике. Со времени изо­бретения Геде ртутных диффузионных насосов, усовершен­ствованных Лэнгмюром, прошло немногим более 50 лет. Эти насосы оказались незаменимыми при получении сверхвысокого вакуума (10 -13 мм рт. ст.). Ртутные диффузионные насосы успешно применяют для создания вакуума в линейных ускорителях элементарных частиц, в устройствах, имитирующих условия космического пространства; в установках термоядерного син­теза, для откачки некоторых приборов, использующих фото­эмиссию.

Ртутным насосам отдают предпочтение при создании вакуума в чувствительных масспектрографах, в течеискателях, использу­ющих водород, и других приборах.

Эти многочисленные применения ртутных насосов объясняются тем, что ртуть обладает важными преимуществами по сравнению с органическим или силиконовыми маслами, используемыми в паро-масляных диффузионных насосах. Одно из этих преимуществ заклю­чается в том, что ртуть, являясь простым веществом, не разлагается на составные части и не загрязняет в такой мере стенки откачиваемых приборов, как ингредиенты жидкостей, используемых в паромасляных насосах.

Способность ртути давать амальгамы (истинные или коллоидные растворы металлов в ртути), даже несмотря на незначительную рас­творимость в ней большинства металлов, имеет исключительное значение. Б последние годы в связи с широким использованием амальгам была создана новая отрасль промышленности, названная амальгамной металлургией. С помощью амальгам осущест­вляется комплексная переработка полиметаллического сырья, полу­чают тонкоднеперсные металлические порошки, многокомпонентные сплавы заданных составов, чистые и сверхчистые металлы, содержа­ние примесей в которых не превышает 10 -6 -10 -8 вес. %. В некото­рых случаях степень рафинирования металла оказывается настолько значительной, что существующие методы анализа не в состоянии обнаружить примесей в конечном продукте. Методом амальгамной металлургии можно получать металлы любой чистоты, в зависимости от чистоты исходных материалов - химических реактивов, воды, аппаратуры и т. д.

При нагревании амальгам до высокой температуры происходит отгонка ртути, и в результате получают металл в виде мелкодисперс­ных пирофорных порошков или компактной массы, содержащей ничтожные следы ртути. Эта особенность амальгам используется в порошковой металлургии; с помощью технологических приемов удается получать многокомпонентные сплавы любых концентраций из тугоплавких металлов или металлов, один из которых имеет низкую температуру плавления, а другой - превышающую 1500- 2000° С.

Многие металлы и сплавы, включая и такие практически нерас­творимые в ртути, как сталь, платина, титан, пермаллой и другие, при удалении с их поверхности окисной или адсорбированной пленки покрываются тонким слоем ртути. Это свойство также нашло при­менение в лабораторной практике и в промышленности. Например, его используют при получении каустической соды и хлора методом электролиза водных растворов хлоридов щелочных металлов на ртутном катоде, предварительно амальгамируя днища стальных электролизеров. Амальгамирование до настоящего времени исполь­зуют в золотодобывающей промышленности для отделения золота от породы с последующей отгонкой ртути, хотя в последнее время этот способ, имеющий многовековую историю, заменяется более прогрессивным способом цианирования.

В электрохимии и аналитической химии, при полярографиче­ском анализе часто применяют амальгамированные платиновые электроды и т. д.

Амальгамы щелочных и щелочноземельных металлов, цинка, алюминия и других элементов используют в препаративной химии для восстановительных реакций. Например, амальгамы щелочных металлов служат для получения водорода и каустической соды при взаимодействии с водою, для восстановления кислорода до перекиси водорода, двуокиси углерода до формиатов и оксалатов. Окислы азота, при взаимодействии с амальгамами щелочных металлов, восстанавливаются до соответствующих нитритов, окис­лы хлора - до хлоритов соответствующих щелочных металлов, двуокись серы - до гидросульфита. Известны также способы получения гидридов щелочных металлов, мышьяка и герма­ния, а также других элементов. С помощью амальгам можно восстанавливать в различных средах ноны металлов до свободных металлов, производить разделение редкоземельных элементов, а также их выделение.

Амальгамы используют также для восстановления органических соединений: для гидрирования кратных углерод-углеродных связей, для восстановления гидроксильных, карбонильных и карбок­сильных групп, для восстановления галогено- и азотсодержа­щих групп, для получения ртутноорганических соединений.

В промышленности эти амальгамы применяют для получения алкоголятов щелочных металлов, которые затем используют при изготовлении различных красителей и лечебных препара­тов - сульфамидов, барбитуратов и витаминов; для восстановления ароматических ннтросоединений до аминов, которые в свою очередь используют при изготовлении всевозможных азокрасителей; для получения шестиатомных спиртов (d-сорбита и d-маннита) путем восстановлении d-глюкозы и d-маннозы. Полученные спирты применяют при производстве специальных сортов бумаги, витамина С, эфиров, искусственных смол; амальгаму натрия исполь­зуют для получения d-рибозы, которая служит исходным продуктом при синтезе витамина В 2 .С помощью амальгам щелочных металлов получают салициловый альдегидов, пинакон который является исходным продуктом при синтезе диметилбутадиенового каучука, глиоксиловую кислоту используемую при синтезе душистых веществ, например, ванилина, при получении галогенсодержащих олефинов и многих других веществ.

Не менее широко применяют амальгамы для получения перекиси натрия, хлорида и гидросульфата натрия и т. д.

Общие сведения и методы получения

Ртуть (Hg) - серебристо-белый тяжелый металл, жидкий при комнат­ной температуре. При замерзании ртуть становится белой, в твердом состоянии легко поддается обработке и имеет зернистый излом. Само­родная ртуть была известна за 2000 лет до н. э. Народы древней Индии н Китая, а также греки и римляне применяли киноварь (природный HgS) как краску, лекарственное и косметическое средство. Греческий врач Диоскорид (I в. до н.э.), нагревая киноварь в железном сосуде с крышкой, получил ртуть в виде паров, которые конденсировались на ее внутренней поверхности. Продукт реакции был назван hydrargyros

(от греческого hydor - «вода» и argyros - «серебро»), т.е. жидким се­ребром. Происхождение русского названия «ртуть» не установлено

Твердая ртуть впервые получена в 1759 г. в Петербурге М. П. Брау­ном и М. В. Ломоносовым, которым удалось заморозить ее в смеси снега с концентрированной азотной кислотой.

Ртуть - весьма редкий элемент. Ее среднее содержание в земной коре -4,5- 10 _б % (по массе). Примерно в таком же количестве она содержится в изверженных горных породах. Известно 35 рудных ми­нералов, содержащих ртуть в таких концентрациях, при которых про­мышленное использование этих минералов технически возможно и эко­номически целесообразно. Основной рудный минерал - киноварь HgS

Ртутные руды делятся на богатые (~ 1 % Hg), рядовые (0,2-0,3 % Hg) и бедные (0,06-0,12% Hg). Основное промышленное значение имеют телетермальные месторождения ртутных руд, которые разраба­тываются подземным способом. Встречается ртуть также в разрабаты­ваемых открытым способом вулканогенных месторождениях.

Существуют два основных способа извлечения ртути - пиро- и гид­рометаллургический. В первом случае руды или концентраты, содержа­щие ртуть в виде HgS , подвергают окислительному обжигу. Полученная в результате обжига жидкая ртуть стекает в специальные приемники. Для последующей очистки ее пропускают через высокий (1,0-1,5 м) сосуд с 10 %-ной HN 0 3 , промывают водой, высушивают и перегоняют в вакууме. Второй способ получения ртути состоит в растворении HgS в сернистом натрии н последующем вытеснении ртути алюминием. Раз­работаны способы извлечения ртути путем электролиза сульфидных растворов.

Физические свойства

Атомные характеристики. Атомный номер 80, атомная масса 200,59 а. е. м., атомный объем 14,26*10 -6 м 3 /моль, атомный радиус 0,157 нм, нонный радиус Hg 2+ 0,110 нм. Конфигурация внешних электронных обо­лочек 5d 10 6s 2 . Потенциалы ионизации J (эВ): 10,43; 18,76; 34,21. Элект­роотрицательность 1,44. Твердая ртуть имеет ромбоэдрическую решетку с периодами а=0,3463 и с=0,671 нм. Известно семь устойчивых изото­пов ртути с массовыми числами: 196 (распространенность 0,2 %), 198 (10%), 199 (16,8%), 200 (23,1 %), 201 (13,2%), 202 (29,8 %) и 204 (6,9%).

Химические свойства

В соединениях проявляет степень окисления +2 и +1.

Ртуть является относительно стойким в химическом отношении эле­ментом. По отношению к кислороду занимает место вблизи золота н серебра. Из металлов подгруппы цннка ртуть наименее активна вслед­ствие высокой энергии ионизации. Нормальные электродные потенциалы реакций диссоциации 2 Hg ->-(Hg 2) 2+ + 2 e , (Hg 2) 2+ ^-2 Hg 2 ++2 e н Hg ->--»- Hg 2+ +2 e равны соответственно 0,80; 0,91 н 0,86 В. Электрохимиче­ский эквивалент ртутн со степенью окисления +1 2,0789 мг/Кл, а со степенью окисления +2 1,03947 мг/Кл. Ртутные соединения относитель­но нестойки нз-за постоянной тенденции ртутн к переходу в атомную форму.

В соляной и разбавленной серной кислотах, а также в щелочах ртуть не растворяется. Легко растворяется в азотной кислоте, а при нагрева­нии в концентрированной серной. Растворима в царской водке. Со сла­быми кислотами ртуть не дает солей нли образует неустойчивые соли типа Hg 2 CQ 3 , которая прн нагревании до 180 °С разлагается на ртуть, ее оксид н С0 2 .

С галогенами ртуть образует почти недиссоцнирующие, в большин­стве своем ядовитые соединения. Практическое значение имеют йодная ртуть Hgl 2 , хлористая ртуть (каломель) Hg 2 Cl 2 н хлорная ртуть (су­лема) HgCl 2 . Йодную ртуть получают воздействием ноднстого ка­лия на растворенные в воде солн ртути. В аналитической хи­мии с помощью этой реакции выявляют присутствие ртутн. Йодная ртуть существует в двух модификациях - красной и желтой. Переход из красной модификации в желтую происходит при 127 °С; обратный переход протекает медленно н требует переохлаждения. Каломель пред­ставляет собой бесцветные тетраэдрнческне кристаллы, постепенно тем­неющие вследствие распада под действием света на сулему и ртуть. Сулема имеет внд бесцветных кристаллов ромбической формы. Чаще всего сулему получают прямым восстановлением ртутн.

Ртуть растворяется в расплавленном белом фосфоре, однако хими­ческих соединений не образует и прн остывании выделяется из распла­ва в химически неизменном виде.

Сернистую ртуть можно получить простым растиранием ртути с сер­ным цветом при комнатной температуре. Сульфид ртутн HgS можно легко получить, воздействуя на ртуть сероводородом прн повышенных температурах.

На воздухе ртуть прн комнатной температуре не окисляется. При продолжительном нагреве до температур, близких к температуре кипе­ния, ртуть соединяется с кислородом воздуха, образуя красный оксид (И) ртути HgO , который прн дальнейшем нагревании снова распадает­ся на ртуть н кислород. В этом соединении степень окисления ртути равна + 2 Известен и другой окснд ртутн - черного цвета. Степень окисления ртутн в нем равна +1, его формула Hg 2 0 Во всех соедине­ниях ртути (I) ее атомы связаны между собой, образуя двухвалентные группы - Hg 2 - илн - Hg - Hg -. Подобная связь сохраняется и в рас­творах солей ртути (I).

Известно существование гидрида HgH 2 , получаемого в результате взаимодействия нодида ртутн и литий - алюминий гидрида. Однако гидрид ртути очень неустойчив и распадается уже при 148 К.

Гидроксиды ртутн неизвестны. В тех случаях, когда можно ожи­дать нх образования, они вследствие своей неустойчивости немедленно отщепляют воду, образуя безводные оксиды.

Помимо галогенидов, известны и другие соли ртути Среди них сер­нистая ртуть HgS ; известны соли ртутн (И) цианистой и роданистой кислот, а также «гремучая ртуть» - соль гремучей кислоты- Hg (ONC) 2 . Почти все солн ртути (И) плохо растворимы в воде. Исключение со­ставляет нитрат Hg (N 0 3) 2 . При воздействии на солн ртути аммиака образуются многочисленные комплексные соединения, например белый плавкий преципитат HgCl -2 NH 3 , белый неплавкий преципитат HgNH 2 Cl и т. п. Известны два основных типа ртутьорганнческнх соединений: R - Hg - R " н R - HgX , где R и R " - органические радикалы, X -кис­лотный остаток. Этн соединения могут быть получены прн взаимодейст­вии солей ртути с магний- нли литийорганнческими соединениями при замещении в органических соединениях водорода ртутью (меркуриро-вание), путем прнсоедннення солей ртутн к ненасыщенным соединени­ям н, наконец, разложением солей дназония в присутствии солей ртути (реакция Несмеянова).

При растворении металлов в ртутн образуются амальгамы (амаль­гамированию подвержены только металлы, смачиваемые ртутью). Они не отличаются от обычных сплавов, хотя прн избытке ртути представля­ют собой полужидкие смеси. Прн этом амальгамы могут быть либо обыкновенными (истинными) растворами (Sn , Pb) и смесями (Zn , Cd), либо химическими соединениями (элементы I группы). По взаимодейст­вию с ртутью металлы можно условно разделить на пять групп:

Металлы, растворимость которых точно не установлена (Та, Si , Re , W , Sb);

Металлы, практически нерастворимые в ртути [растворимость не выше 2- Ю- 5 % (по массе): Cr , Со, Fe , V, Be ];

Металлы с очень низкой растворимостью (на уровне металлов, указанных выше), но образующие с ней химические соединения (Ni , Ti , Mo , Мп, U);

Металлы, не реагирующие с ртутью прн обычных температурах

но взаимодействующие с ней при повышенных температурах или после предварительного измельчения (Al , Си, Hf , Ge);

Металлы, образующие с ртутью твердые растворы, а некоторые из них и химические соединения.

Соединения, получающиеся в результате амальгамирования, легко разлагаются ниже температуры их плавления с выделением избытка ртути.

Диаграммы состояния Au - Hg , Ag - Hg , Pt - Hg и Sn - Hg имеют характерные переходные точки, соответствующие разложению химиче­ских соединений, образующихся прн амальгамировании в различных температурных условиях. С этими соединениями ртуть образует ряд металлических соединений Стали, легированные углеродом, кремнием, хромом, никелем, молибденом и ниобием, не амальгамируются.

Области применения

Ртуть широко применяется прн изготовлении различных приборов (ба­рометры, термометры, манометры, вакуумные насосы, нормальные эле­менты, полярографы, электрометры и др.); в ртутных лампах, переклю­чателях, выпрямителях; как жидкий катод в производстве едких щело­чей и хлора электролизом; в качестве катализатора прн синтезе уксус­ной кислоты; в металлургии для амальгамирования золота и сребра; при изготовлении взрывчатых веществ (гремучая ртуть); в медицине (каломель, сулема, ртутьоргаиическне и другие соединения); в качестве пигмента (киноварь); в сельском хозяйстве в качестве протравителя семян и гербицида (органические соединения ртутн); в судостроении для окраски (компонент краски) морских судов, а также в медицинской практике.