Для водопровода        11.10.2019   

Применение циркония и его соединений. Области применения и конъюнктура рынка циркония и гафния

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

Производство циркония ядерной чистоты

ВВЕДЕНИЕ

цирконий примесь металлический

Все большее количество стран -- и развитых, и развивающихся, -- сегодня приходят к необходимости начала освоения мирного атома. Сегодня в мире обозначилась тенденция, получившая название «ядерный ренессанс». Самые сдержанные прогнозы говорят о том, что в перспективе 2030 года на планете будет эксплуатироваться до 500 энергоблоков (для сравнения, сейчас их насчитывается 435).

Ежегодно атомные станции в Европе позволяют избежать эмиссии 700 миллионов тонн СО2, а в Японии -- 270 миллионов тонн СO2. Действующие АЭС России ежегодно предотвращают выброс в атмосферу 210 млн тонн углекислого газа. По этому показателю наша страна находится лишь на четвертом месте в мире.

Больше всего АЭС (63 АЭС, 104 энергоблока) эксплуатируется в США. На втором месте идет Франция (58 энергоблоков), на третьем -- Япония (50 блоков).

Россия обладает технологией атомной энергетики полного цикла: от добычи урановых руд до выработки электроэнергии; обладает значительными разведанными запасами руд, а также запасами в оружейном виде.

В настоящее время в России на 10 действующих АЭС эксплуатируется 33 энергоблока общей чистой мощностью 23 643 МВт (25 242 МВт номинальной), из них 17 реакторов с водой под давлением -- 11 ВВЭР-1000, 6 ВВЭР-440; 15 канальных кипящих реакторов -- 11 РБМК-1000 и 4 ЭГП-6; 1 реактор на быстрых нейтронах -- БН-600. В процессе ввода в промышленную эксплуатацию находится 1 энергоблок - БН-800

1. СХЕМЫ ПРОИЗВОДСТВА ЦИРКОНИЯ ЯДЕРНОЙ ЧИСТОТЫ

Сплав Э110 является базовым материалом действующих украинских реакторов. Параллельно ведутся работы по промышленному внедрению более радиационно- и коррозионно-стойкого сплава Э635с целью повышения выгорания и ресурса активныхзон. Характерной особенностью этих сплавов является наличие ниобия, основного легирующего элемента как для бинарного, так и для многокомпонентного сплавов. Базовые циркониевые сплавы западного производства (циркалой-2 и 4) легированы оловом, железом, хромом и никелем. В последнее время на Западе появились новые перспективные циркониевые сплавы, легированные в основном или в том числе ниобием (Zirlo, M4, M5, NDA, MDA). Составы циркониевых сплавов, используемых в активных зонах атомных реакторов, приведены в табл. 1 . Как видно из таблицы, российский сплав циркония с 1% ниобия (Э110) по составу аналогичен французскому сплаву М5, но методы их производства существенно различаются. Рассмотрим более подробно особенности этих методов.

Производство ядерно-чистого циркония включает более 25 этапов, которые можно объединить в четыре основные стадии .

1. Разложение (вскрытие) цирконовой руды.

2. Получение сырьевых составляющих для очистки от гафния: (ZrCl4+HfCl4) или (K2ZrF6+K2HfF6). Перед очисткой сырье обычно содержит ~1,5…2,5 мас.% гафния.

3. Разделение соединений циркония и гафния, получение ZrCl4 или K2ZrF6 с низким содержанием гафния.

4. Восстановление соединений циркония и получение металлического циркония с низким содержанием гафния (<0,05 мас.%).

Каждый этап на этих стадиях может изменяться со временем с целью уменьшения себестоимости или упрощения операций. Следовательно, вид и количество примесей, участвующих в процессе получения сплава, также изменяются и могут влиять на изменение свойств сплава. Основным процессом вскрытия (разложения) цирконовой руды, который используется при производстве металла для сплава Э110, является фторидная химия, т.е. конверсия руды во фторцирконат калия по реакции :

ZrO2·SiO2 + 2KF·SiF4 = K2ZrF6 +2SiO2. (1)

Эта операция, обычно осуществляемая при 700…800 °С, приводит к загрязнению циркония фтором -наиболее вероятно в виде ZrF4.

В западных странах основным процессом вскрытия цирконовой руды, используемой для производства циркониевых сплавов М5, Zirlo, циркалой-2 и 4, является хлоридная химия . В этом процессе смесь ZrO2·SiO2 и графита хлорируется SiCl4, TiCl4 или AlCl4. Циркон превращается в ZrCl4 и SiCl4 при температуре >1150 °С. Тетрахлорид циркония содержит некоторое количество тетрахлорида гафния, поэтому их разделяют метилизобутилкетоном (МИБК). Разделение циркония и гафния необходимо потому, что поперечное сечение поглощения тепловых нейтронов гафния (105 барн) почти в 600 раз больше, чем у циркония. Ограничение по содержанию гафния объясняется необходимостью обеспечения минимального содержания в активной зоне реактора материалов с повышенным коэффициентом захвата нейтронов. Существует несколько методов разделения циркония и гафния, но наиболее часто применимы три: метилизобутилкетоновый процесс , экстракционная дистилляция и дробная кристаллизация солей циркония и гафния . Метод дробной кристаллизации применяется при производстве ядерно-чистого циркония, необходимого для производства реакторных сплавов Э110 и Э635 в Российской Федерации. Полученный после вскрытия циркона фторцирконат калия (K2ZrF6) содержит 1,5…2,5 мас.% фторгафната калия (K2HfF6) как примесь. Суть метода дробной кристаллизации основана на том, что растворимость K2HfF6 в дистиллированной воде немного выше, чем растворимость K2ZrF6. Когда смесь растворена в воде при температуре <90 °С, происходит небольшое накопление гафния в растворе и его концентрация в нерастворенной смеси K2ZrF6 и K2HfF6 немного уменьшается. Затем раствор медленно охлаждается, и происходит дробная кристаллизация компонентов с различными скоростями. В результате проведения дробной кристаллизации (~15 циклов) концентрация K2HfF6 в окончательной смеси уменьшается и составляет 0,04…0,05 мас.%. Полученный таким образом K2ZrF6 восстанавливают в металл электролитическим методом.

Более простым и традиционным методом очистки от гафния, применяемым при производстве циркалоев М5 и Zirlo в западных странах, является МИБК процесс. Он начинается с получения смеси ZrCl4 + HfCl4 при вскрытии цирконовой руды и имеет несколько этапов:

1. Превращение смеси ZrCl4 + HfCl4 в ZrОCl2 + HfОCl2 в воде.

2. Превращение оксихлоридных компонентов в ZrО(SCN)2 + HfО(SCN)2 при использовании сернокислого раствора NH4SCN.

3. Удаление HfО(SCN)2 методом жидкостной экстракции, используя МИБК.

4. Обработка ZrО(SCN)2 соляной кислотой (HCl), превращение его в ZrОCl2.

5. Превращение ZrОCl2 в Zr(ОН)4, используя гидрооксид аммония (NH4ОН) и серную кислоту (H2SО4).

6. Получение ZrО2, используя гидрооксид циркония и кальций, по реакции:

Zr(OH)4+Ca=ZrO2+Ca(OH)2.

7. Хлорирование ZrО2 и превращение его в ZrCl4.

8. Восстановление ZrCl4 в металл методом Кролля.

Еще один метод очистки циркония от гафния - экстракционная дистилляция, который был разработан относительно недавно . Смесь фторцирконата калия (K2ZrF6) и 2…2,5 мас.% фторгафната калия (K2HfF6) разделяется экстракционной дистилляцией с растворителем в виде расплавленных KCl и AlCl3.

Конечный продукт этого процесса (ZrCl4), который обычно содержит <0,01 мас.% гафния, поступает на восстановление методом Кролля. На предприятиях CEZUS (Франция) разделение циркония и гафния проводят этим методом.

В США разделение осуществляется жидкостной экстракцией. В Канаде и Индии экстракция проводится из нитратных растворов трибутилфосфата. В России разделение циркония и гафния проводят методом дробной (фракционной) кристаллизации.

Металлический цирконий, используемый для производства сплавов Э110 и Э635, обычно получают сплавлением электролитического и йодидного циркония. Йодидный цирконий получают разложением тетрайодида циркония (ZrI4) на накаленной вольфрамовой или циркониевой нити, нагретой до температуры 1300 °С (метод Ван-Аркеля). Чистота полученного циркония очень высока. Электролитический цирконий получают электролизом K2ZrF6 в расплавaх KCl, NaCl, смеси KCl-NaCl или других галогенидов . Металлический цирконий, полученный этим методом, содержит примесь фтора, который попадает в цирконий на стадиях вскрытия руды, удаления гафния и электролиза.

Практически весь металлический цирконий, который используется для производства сплавов М5, Zirlo, циркалой, MDA и NDA в западных странах, получают методом Кролля . При этом чистый от гафния ZrCl4 восстанавливается расплавом магния с получением циркониевой губки: ZrCl4+2Mg=2MgCl2+Zr. (2)

Циркониевая губка содержит остаток MgCl2 и дополнительный Mg. Концентрации MgCl2 и Mg уменьшаются дегазацией в вакууме или вакуумной дистилляцией. Однако полностью удалить остатки этих веществ невозможно. Таким образом, в полученной циркониевой губке содержится Mg. Технологические схемы производства циркония в западных странах (Франция и США) и России показаны на рис. 1 и 2.

2.ПРИМЕСИ В ЦИРКОНИЕВЫХ СПЛАВАХ

Из приведенных выше данных становится ясно, что процессы получения (вскрытие цирконовой руды, очистка от гафния, металлотермическое восстановление) сплавов российского производства (Э110 и Э635) и западного производства (М5, циркалои, Zirlo) сильно отличаются. В этой связи важным является противопоставление типов примесей и механизмов их попадания в сплавы в процессе производства двух групп циркониевых сплавов. Примеси в циркониевых сплавах, связанные с процессами их получения, систематизированы в табл. 2. В ней также приведены примеси, которые могут попасть в циркониевые сплавы в процессе окончательной обработки труб из этих сплавов, т.е. обезжиривание, окончательная очистка и полировка поверхности твердыми оксидами. Примеси, связанные с обработкой труб, попадают в сплавы при температуре, близкой к комнатной, поэтому их присутствие ограничивается тонким слоем у поверхности труб.

Главные отличия между сплавами российского и западного производства по процессам получения и наличию примесей можно обобщить таким образом:

Процессам производства сплавов типа циркалой, Zirlo, M5 свойственно присутствие в конечном продукте примесей: кальция и магния (отделение гафния методом МИБК с последующим восстановлением методом Кролля) или алюминия и магния (отделение гафния экстракционной дистилляцией и последующим методом Кролля); попадание фтора в эти сплавы невозможно в процессе изготовления этих сплавов из-за отсутствия в процессе производства реагентов, содержащих фтор;

Процессу производства сплавов Э110 и Э635 не свойственно присутствие кальция, магния и алюминия в течение всего производственного цикла и, следовательно, попадание этих примесей в сплавы; в процессе производства этих сплавов используется фтор, и как следствие, - его присутствие в этих сплавах.

Высокая коррозионная стойкость циркониевых сплавов в условиях нормальной эксплуатации реакторов - это необходимое требование для всех оболочечных трубок, но нет гарантии, что эти сплавы будут показывать высокую коррозионную стойкость и при повышенных температурах в условиях потери теплоносителя (loss-of-coolant accident (LOCA)). Известно, что в условиях LOCA существенно возрастает температура оболочечных трубок (до 1200 °С ), происходит высокотемпературное паровое окисление оболочечных трубок, сопровождаемое их охрупчиванием, и возможно разрушение охрупченных оболочечных трубок.

В этой связи очень важным является установление взаимосвязи между коррозионной стойкостью циркониевых сплавов и их химическим составом, поскольку поведение сплавов российского и западного производства, содержащих различные примеси, в условиях LOCA отличаются. В работах показано, что существует зависимость коррозионной стойкости циркониевых сплавов от присутствия в них различных примесей. Основные данные приведены ниже:

Стабилизация тетрагональной формы диоксида циркония приводит к улучшению коррозионной стойкости оболочечных труб;

В этой связи все примеси в сплавах можно разделить на полезные и вредные:

Полезные примеси: Fe, Cr, Ca, Mg, Y;

Вредные примеси: C, N, F, Cl, Si, Ti, Ta, V, Mn, Pt, Cu;

По влиянию таких элементов, как Al, Ni, Mo существуют противоположные точки зрения;

Относительно кислорода многие исследователи считают, что он нейтрален по отношению к коррозионной стойкости;

Коррозия сплавов очень чувствительна к содержанию таких легирующих элементов, как Nb и Sn.

Каждый тип сплавов имеет оптимальную концентрацию легирующих элементов, обеспечивающую наилучшую коррозионную стойкость.

Из вышесказанного можно сделать вывод, что примесный состав - один из ключевых факторов, определяющих поведение сплавов Zr-Nb в высокотемпературных условиях.

3.ПРОИЗВОДСТВО МЕТАЛЛИЧЕСКОГО ЦИРКОНИЯ В РОССИИ

Промышленное получение пластичного циркония реакторной чистоты осуществляется в России электролизом фторидно-хлоридных расплавов (см. рис.2) в герметичных электролизерах мощностью 10 кА, внедренных впервые в мировой практике в производство в 1974 г. . ОАО «Чепецкий механический завод» (ОАО ЧМЗ) является единственным в мире предприятием, получающим порошок циркония через электролиз. В результате электролиза в закрытых электролизерах получают циркониевый порошок с содержанием кислорода 0,04...0,08 мас.%, который служит основой сплавов Э110, Э125 и Э635. Содержание гафния в таком цирконии составляет 0,03...0,04 мас.%. Для получения порошка циркония с содержанием гафния меньше 0,01 мас.% разработана технология, позволяющая использовать в технологической цепочке в качестве питающей соли тетрафторид циркония (ZrF4) украинского производства .

Сегодня на ОАО ЧМЗ внедряется уникальная технология производства циркониевой губки ядерной чистоты путем магниетермического восстановления (производство циркониевой губки - это экономически выгодный, менее энергоемкий и относительно быстрый процесс). В таком процессе производства циркония не используется фтор и, как следствие, - его отсутствие в полученном металле. От французского способа российский способ получения губчатого циркония отличается методом хлорирования и способом очистки полученного тетрахлорида циркония. Французская фирма CEZUS хлорирование производит в псевдоожиженном слое шихты, а российское предприятие ОАО ЧМЗ - путем хлорирования в расплаве. В качестве варианта очистки тетрахлорида циркония от простых примесей (Fe, Al, Ti, Ni, Cr и т.п.) в отличие от французской водородной очистки российские ученые разработали метод солевой очистки в расплаве солей. Далее по технологической схеме российский процесс получения губки от французского принципиально не отличается. Согласно предлагаемой технологической схеме цирконийсодержащую руду подвергают хлорированию, затем полученный тетрахлорид циркония очищают от гафния методом экстракционной ректификации в ректификационной колонне и, наконец, с помощью магниетермического восстановления и вакуумной сепарации получают металлическую губку циркония. Готовый продукт (губчатый цирконий) имеет технические характеристики, соответствующие требованиям мировых стандартов качества и может достойно соперничать по качеству с продукцией для АЭС, выпускаемой другими странами-производителями (содержание примеси гафния в сплавах циркония в три раза ниже нормы, обозначенной требованиями международного стандарта ASTM) .

Рассмотрены вопросы получения циркония ядерной чистоты на различных стадиях его переработки различными методами. Приведены особенности этих методов. Проанализированы механизмы попадания примесей в циркониевые сплавы в процессе их получения и влияние примесей на поведение сплавов в высокотемпературных условиях.

ПРИЛОЖЕНИЯ

Размещено на Allbest.ru

...

Подобные документы

    Физико–химические свойства циркония, источники сырья, области применения. Описание процесса переработки цирконового концентрата спеканием с известью. Расчет расхода соляной кислоты для отмывки спека от примесей и для разложения цирконата кальция.

    курсовая работа , добавлен 14.07.2012

    Основные свойства циркония. Способы разделения гафния и разложения цирконовых концентратов. Нахождение в природе и минералы циркония. Продукты переработки цирконовых концентратов. Расчёт процесса спекания цирконового концентрата с фторсиликатом калия.

    курсовая работа , добавлен 23.10.2013

    Сущность и преимущества золь-гель-технологии синтеза порошков диоксида циркония, стабилизированного оксидом иттрия. Технологические свойства, структура и фазовый состав полученных порошков и напыленных из них покрытий, перспективы их применения.

    статья , добавлен 05.08.2013

    Технико-экономическое обоснование проектирования предприятия. Технологическая схема производства консервов. Подбор и расчет технологического оборудования. Технохимический контроль производства. Нормализация чистоты воздуха в производственных помещениях.

    дипломная работа , добавлен 11.11.2010

    Типы атомных электростанций. Тепловые схемы АЭС. Перспективы развития ядерной и термоядерной энергетики. Будущее ядерной энергетики в Республике Беларусь. Целесообразность развития ядерной энергетики. Требования к экономическим параметрам АЭС.

    реферат , добавлен 20.03.2005

    Производство циркониевого сырья на Украине, области применения его соединений. Металлургический передел в цехе №12 ГНПП "Цирконий". Расчеты по металлургическому переделу циркония. Методы контроля газообразных элементов. Активационный анализ в цирконии.

    дипломная работа , добавлен 22.10.2014

    Разработка технологии комплексного воздействия на металлический расплав в агрегатах типа АКОС и промковше МНЛЗ с целью получения в трубной стали сверхнизких содержаний вредных примесей. Методика и инструменты очистки межузлия решётки и границ зёрен.

    дипломная работа , добавлен 22.11.2010

    Существующие методы производства хлорированных парафинов и их краткая характеристика. Описание технологической схемы производства. Выбор средств контроля и управления технологическим процессом. Технологический, тепловой и экономический расчет реактора.

    курсовая работа , добавлен 24.01.2012

    Особенности текстильного производства, технологическая схема получения пряжи. Характеристика льночесальной, лентоперегонной и прядильной машин, их назначение. Составление приближенной координационной таблицы. Координация работы оборудования между цехами.

    курсовая работа , добавлен 02.12.2010

    Характеристика и теоретические основы производимого продукта. Разработка технологической схемы производства сычужного сыра "Российского". Основное оборудование. Требования к качеству разрабатываемого продукта. Упаковка, маркировка, условия хранения.

Имеющий желтоватый оттенок. Его получают переплавкой циркониевых отходов, а также рудного концентрата.

Цирконий: цены, ГОСТ, описание

Обозначение - ГОСТ 21907-76. Это пластичный и ковкий (практически как золото) коррозионностойкий, парамагнитный, жаростойкий металл. Цирконий устойчив к действию морской и хлорированной воды, аммиака, щелочей, кислот, свои качества не теряет в условиях низких и высоких температур. В основном применяется в сплаве с другими металлами. Это не только придает ему уникальные свойства, но и повышает технологичность. Стоимость - от 5500 рублей за килограмм в зависимости от марки и фирмы-изготовителя.

На сегодняшний момент цирконий относится к самоцветам. В Средневековье его алмаза, но присущая алмазам твердость в нем отсутствует.

Геология

Цирконий - металл, который в рудных месторождениях буквально рассыпан в различных уголках планеты. Он встречается в форме солей, аморфных окислов и монокристаллов, как в США (в Северной Каролине). В месторождениях Нигерии периодически находят кристаллы весом в килограмм. Самые богатые залежи находятся на территории Австралии, ЮАР, Индии и Северной Америки.

Цирконий (металл) часто встречается в руде вместе с гафнием, который больше всего близок к нему по свойствам. В России его природные запасы оцениваются в 10% от общемировых. Этот металл в 1799 году был впервые выделен в форме двуокиси Клапротом (немецким химиком) из минерала циркона. Выплавляется он из обогащенного рудного концентрата, в котором содержание составляет 60-65%.

Цирконий (металл): применение

Сплавы рассматриваемого вещества используют в различных сферах промышленности: самолето- и ракетостроении, литейном деле, приборостроении, военном производстве.

За счет повышенной стойкости к воздействию разных сред он отыскал применение в медицинском протезировании, создании В данной сфере цирконий смог обогнать титан, поскольку его устойчивость является вечной.

Ювелирное дело

Цирконий (металл) в ювелирных изделиях используется издавна. Анодированный материал способен приобретать любой оттенок, тем самым предоставляя широкие возможности для воплощения смелых художественных замыслов. Если хотите чего-либо необычного и оригинального, вам нужно обратить внимание на различные украшения из циркония. Такие изделия элегантны и интересны своей завершённостью. Из-за этого на мировом рынке они оцениваются очень высоко.

Лечебные свойства

Нужно отметить, что его прямого биологического воздействия на человеческий организм не обнаружено, хотя в определенных сферах очень важен цирконий. Металл, лечебные свойства которого описаны в этой статье, начал применяться в медицине из-за особых химических и физических свойств:

  • применяется для изготовления инструментов, так как совершенно нейтрален к воздействию кислот, щелочей, аммиака, воды;
  • стимулирует скорое заживление ран, при этом препятствуя образованию гноя и проникновению инфекций, поскольку оказывает противомикробное действие;
  • считается прекрасным антисептиком;
  • облегчает аллергические реакции, при этом сам не является аллергеном;
  • радиационное излучение не пропускает.

Пластичность данного металла дает возможность сохранить структуру костей при сложнейших переломах, они при этом быстрее срастаются. Для изготовления нитей для швов также начали использовать цирконий (металл).

Изделия с ним могут оказывать целебное воздействие при гипертонических болезнях, кожных недугах, артритах и артрозах, хотя от официальной медицины подтверждений этого еще не поступало.

Цирконий активно используется в ортопедическом протезировании и стоматологии. Большинство сплавов металлов вызывает побочные эффекты и аллергии в ротовой полости. Цирконий абсолютно устойчив к коррозии, а также нейтрален к различным средам. Сам он при этом на ткани организма не оказывает раздражающего действия.

Суточная норма

Необходимо отметить, что ежедневная норма данного макроэлемента точно не определена, поскольку наш организм может обходиться и без него. Каждый день с едой нам поступает по 0,05 мг данного металла, но он пассивен для того, чтобы вступать в химические реакции. Вещество самостоятельно не синтезируется, хотя может накапливаться в органах.

Избыток циркония в организме

Медики до сих пор не имеют данных о летальной дозе данного элемента для человеческого организма, хотя его передозировка может вызвать негативные последствия. Избыток вызывается при работе на соответствующих производствах, использовании средств индивидуальной гигиены или при проживании около источников, которые загрязняют окружающую среду.

Нужно отметить, что проявлениями передозировки являются следующие симптомы: пневмония и раздражение покровов кожи. Цирконий - металл, который может накапливаться в органах, при этом оседая на тканях. Из продуктов получить такую большую дозу нереально.

Недостаток в организме

Недостаток такого макроэлемента, как цирконий (металл), свойства которого подробно описаны в этой статье, не приведет к каким-то нежелательным последствиям, поскольку его нет в составе клеток. При этом исследования ведутся до сих пор, и металл еще может открыть для нас множество своих качеств.

Источники

Цирконий - металл, который содержится в продуктах питания в минимальных количествах, поэтому вызвать какие-то негативные последствия не может. Ниже приведен список продуктов, с которыми мы можем получить этот элемент:

  • баранина;
  • овсянка, рис, пшеница;
  • мускатный орех, фисташки;
  • растительные масла;
  • бобовые;
  • жгучий красный перец.

Когда необходимо использовать?

Показания к использованию для лечения циркония еще не установлены, хотя в качестве отличного материала для медицинских инструментов и имплантатов он незаменим.

Указанный металл используют в химическом машиностроении в качестве стойкого к коррозии материала. Его присадки раскисляют сталь, а также удаляют из неё серу и азот. Порошкообразный цирконий используется в производстве боеприпасов и в пиротехнике. Сульфат циркония представляет собой дубитель, который активно применяется в кожевенной промышленности.

Соединения циркония широко распространены в литосфере. По разным данным кларк циркония от 170 до 250 г/т. Концентрация в морской воде 5·10-5 мг/л. Цирконий - литофильный элемент. В природе известны его соединения исключительно с кислородом в виде окислов и силикатов. Несмотря на то, что цирконий рассеянный элемент, насчитывается около 40 минералов, в которых цирконий присутствует в виде окислов или солей. В природе распространены главным образом циркон (ZrSiO4)(67,1 % ZrO2), бадделеит (ZrO2) и различные сложные минералы (эвдиалит (Na, Ca)5(Zr, Fe, Mn) и др.). Во всех земных месторождениях цирконию сопутствует Hf, который входит в минералы циркона благодаря изоморфному замещению атома Zr.
Циркон является самым распространенным циркониевым минералом. Он встречается во всех типах пород, но главным образом в гранитах и сиенитах. В графстве Гиндерсон (штат Северная Каролина) в пегматитах были найдены кристаллы циркона длиной в несколько сантиметров, а на Мадагаскаре были обнаружены кристаллы, вес которых исчисляется килограммами. Бадделеит был найден Юссаком в 1892 году в Бразилии. Основное месторождение находится в районе Посус-ди-Калдас (Бразилия). Наиболее крупные месторождения циркония расположены на территории США, Австралии, Бразилии, Индии.
В России, на долю которой приходится 10% мировых запасов циркония (3 место в мире после Австралии и ЮАР), основными месторождениями являются: Ковдорское коренное бадделит-апатит-магнетитовое в Мурманской области, Туганское россыпное циркон-рутил-ильменитовое в Томской области, Центральное россыпное циркон-рутил-ильменитовое в Тамбовской области, Лукояновское россыпное циркон-рутил-ильменитовое в Нижегородской области, Катугинское коренное циркон-пирохлор-криолитовое в Читинской области и Улуг-Танзекское коренное циркон-пирохлор-колумбитовое.

Запасы на месторождениях циркония в 2012 году, тыс.тонн *

Австралия 21,000.0
ЮАР 14,000.0
Индия 3,400.0
Мозамбик 1,200.0
Китай 500.0
Прочие страны 7,900.0
Всего запасы 48,000.0

* данные US Geological Survey

В промышленности исходным сырьем для производства циркония являются циркониевые концентраты с массовым содержанием диоксида циркония не менее 60-65%, получаемые обогащением циркониевых руд. Основные методы получения металлического циркония из концентратом - хлоридный, фторидный и щелочной процессы. Крупнейшим производителем циркона в мире является компания Iluka.
Производство циркона сконцентрировано в Австралии (40% продукции в 2010 году) и Южной Африке (30%). Остальной циркон производится в более чем дюжине других стран. Добыча циркона увеличивалась ежегодно в среднем на 2,8% в период между 2002 и 2010 годами. Крупные производители, такие как Iluka Resources, Richards Bay Minerals, Exxaro Resources Ltd и DuPont, извлекают циркон как побочный продукт во время добычи полезных ископаемых титана. Спрос на полезные ископаемые титана не увеличивался с такой скоростью, как в случае с цирконом в прошлое десятилетие, поэтому производители начали развивать и эксплуатировать минеральные залежи песков с более высоким содержанием циркона, такие как в Африке и в Южной Австралии.

* данные US Geological Survey

В промышленности цирконий стал применяться с 30-х годов XX века. Из-за высокой стоимости его применение ограничено. Металлический цирконий и его сплавы применяются в ядерной энергетике. Цирконий имеет очень малое сечение захвата тепловых нейтронов и высокую температуру плавления. Поэтому металлический цирконий, не содержащий гафния, и его сплавы применяются в атомной энергетике для изготовления тепловыделяющих элементов, тепловыделяющих сборок и других конструкций ядерных реакторов.
Другой областью применения циркония служит легирование. В металлургии применяется в качестве лигатуры. Хороший раскислитель и деазотатор, по эффективности превосходит Mn, Si, Ti. Легирование сталей цирконием (до 0,8%) повышает их механические свойства и обрабатываемость. Делает также более прочными и жаростойкими сплавы меди при незначительной потере электропроводности.
Используется цирконий и в пиротехнике. Цирконий обладает замечательной способностью сгорать в кислороде воздуха (температура самовоспламенения - 250°C) практически без выделения дыма и с высокой скоростью. При этом развивается самая высокая температура для металлических горючих (4650°C). За счет высокой температуры образующаяся двуокись циркония излучает значительное количество света, что используется очень широко в пиротехнике (производство салютов и фейерверков), производстве химических источников света, применяемых в различных областях деятельности человека (факелы, осветительные ракеты, осветительные бомбы, ФОТАБ - фотоавиабомбы; широко применялся в фотографии в составе одноразовых ламп-вспышек, пока не был вытеснен электронными вспышками). Для применения в этой сфере представляет интерес не только металлический цирконий, но и его сплавы с церием, дающие значительно больший световой поток. Порошкообразный цирконий применяют в смеси с окислителями (бертолетова соль) как бездымное средство в сигнальных огнях пиротехники и в запалах, заменяя гремучую ртуть и азид свинца. Проводились удачные эксперименты по использованию горения циркония в качестве источника света для накачки лазера.
Еще одно применение циркония - в сверхпроводниках. Сверхпроводящий сплав 75% Nb и 25 % Zr (сверхпроводимость при 4,2 K) выдерживает нагрузку до 100 000 А/см2. В виде конструкционного материала цирконий идет на изготовление кислотостойких химических реакторов, арматуры, насосов. Цирконий применяют как заменитель благородных металлов. В атомной энергетике цирконий является основным материалом оболочек твэлов.
Цирконий обладает высокой стойкостью к воздействию биологических сред, даже более высокой, чем титан, и отличной биосовместимостью, благодаря чему применяется для создания костных, суставных и зубных протезов, а также хирургического инструмента. В стоматологии керамика на основе диоксида циркония является материалом для изготовления зубопротезных изделий. Кроме того, благодаря биоинертности этот материал служит альтернативой титану при изготовлении дентальных имплантатов.
Цирконий применяется для изготовления разнообразной посуды, обладающей отличными гигиеническими свойствами благодаря высокой химической стойкости.
Диоксид циркония (т. пл. 2700°C) используется для производства огнеупоров-бакоров (бакор - бадделеит-корундовая керамика). Применяется в качестве заменителя шамота, так как в 3-4 раза увеличивает кампанию в печах для варки стекла и алюминия. Огнеупоры на основе стабилизированной двуокиси применяются в металлургической промышленности для желобов, стаканов при непрерывной разливке сталей, тиглей для плавки редкоземельных элементов. Также применяется в керметах - керамикометаллических покрытиях, которые обладают высокой твёрдостью и устойчивостью ко многим химическим реагентам, выдерживают кратковременные нагревания до 2750°C. Двуокись - глушитель эмалей, придает им белый и непрозрачный цвет. На основе кубической модификации двуокиси циркония, стабилизированной скандием, иттрием, редкими землями, получают материал - фианит (от ФИАНа где он был впервые получен), фианит применяется в качестве оптического материала с большим коэффициентом преломления (линзы плоские), в медицине (хирургический инструмент), в качестве синтетического ювелирного камня (дисперсия, показатель преломления и игра цвета больше, чем у бриллианта), при получении синтетических волокон и в производстве некоторых видов проволоки (волочение). При нагревании диоксид циркония проводит ток, что иногда используется для получения нагревательных элементов, устойчивых на воздухе при очень высокой температуре. Нагретый цирконий способен проводить ионы кислорода как твердый электролит. Это свойство используется в промышленных анализаторах кислорода.
Гидрид циркония применяется в атомной технике как весьма эффективный замедлитель нейтронов. Также гидрид циркония служит для покрытия цирконием в виде тонких плёнок с помощью термического разложения его на различных поверхностях.
Нитрид циркония материал для керамических покрытий, температура плавления около 2990°C , гидролизуется в царской водке. Нашёл применение в качестве покрытий в стоматологии и ювелирном деле.
Циркон, т.е. ZrSiO4, является основным минералом-источником циркония и гафния. Также из него извлекают различные редкие элементы и уран, которые в нём концентрируются. Цирконовый концентрат используется при производстве огнеупоров. Высокое содержание урана в цирконе делает его удобным минералом для определения возраста методом уран-свинцового датирования. Прозрачные кристаллы циркона используются в ювелирных украшениях (гиацинт, жаргон). При прокаливании циркона получают ярко-голубые камни, носящие название старлит.
Около 55% всего циркония применяется для производства керамики - керамической плитки для стен, пола, а также для производства керамических подложек в электронике. Около 18% циркона используется в химической промышленности, а рост потребления в данной области составляет в последние годы в среднем 11% в год. Для выплавки металла используется примерно 22% циркона, однако это направление в последнее время не столь популярно ввиду наличия более дешевых методов получения циркония. Оставшиеся 5% циркона используются для призводства катодных трубок, однако потребление в данной области падает.
Потребление циркона сильно увеличилось в 2010 году до 1,33 млн тонн, после того, как экономический спад в мире в 2009 году стал причиной уменьшения потребления на 18% к 2008 году. Рост потребления в производстве керамики, которое составило 54% потребления циркона в 2010 году, особенно в Китае, а также в других развивающихся экономических системах, таких как Бразилия, Индия и Иран, был ключевым фактором для увеличенного спроса на циркон в 2000-ых годах. В то время как в США и Еврозоне потребление даже снизилось. Потребление циркона в химикатах циркония, включая двуокись циркония, более чем удвоилось в период между 2000 и 2010 годами, тем временем использование циркона для выплавки металлического циркония показало более низкие темпы роста.
Как сообщает Roskill, 90% потребляемого в мире металлического циркония используется в производстве узлов ядерных реакторов и около 10% - в изготовлении стойкой к коррозии и высоким давлениям облицовки контейнеров, применяемых на заводах по выпуску уксусной кислоты. По мнению экспертов, в перспективе ожидается повышение мирового спроса на металлический цирконий, поскольку в ряде стран (в КНР, Индии, Южной Корее и США) планируется строительство новых атомных электростанций.
Окись циркония, также известная как двуокись циркония, используется в промышленном применении, включая лекарственные препараты, оптоволокно, водонепроницаемую одежду и косметику. Есть большее потребление материалов двуокиси циркония - мука циркона и сплавленная двуокись циркония из-за быстрого увеличения производства керамической плитки в Китае. Южная Корея, Индия и Китай - важные рынки роста для окиси циркония. По данным отчета об исследовании рынка циркония, Азиатско-Тихоокеанский регион представляет самый большой и быстро растущий региональный рынок в мире. Компания Saint-Gobain, размещенная во Франции, является одним из самых крупных изготовителей двуокиси циркония.
Крупнейший рынок конечного использования циркония - керамика, которая включает плитки, санитарное изделие и столовую посуду. Следующие крупнейшие рынки, которые используют материалы циркония, невосприимчивые и сектора литейного завода. Циркон используется как добавка для большого разнообразия керамических продуктов, и он также используется в стеклянном покрытии в компьютерных мониторах и телевизионных панелях, поскольку материал обладает абсорбирующими радиацию свойствами. Кирпичи с добавлением циркония используются в качестве альтернативы базовым решениям с сплавленной двуокисью циркония.

Производство и потребление циркона (ZrSiO4) в мире, тыс.тонн*

год 2008 2009 2010 2011 2012
Всего производство 1300.0 1050.0 1250.0 1400.0 1200.0
Китай 400.0 380.0 600.0 650.0 500.0
Прочие страны 750.0 600.0 770.0 750.0 600.0
Всего потребление 1150.0 980.0 1370.0 1400.0 1100.0
Баланс рынка 150.0 70.0 -120.0 -- 100.0
Цена COMEX 788.00 830.00 860.00 2650.00 2650.00

* Сводные данные

Рынок циркона показал резкое сокращение, которое началось в конце 2008 года и продлилось в течение 2009 года. Производители сократили объемы производства, чтобы сократить издержки и остановить накопление запасов. Потребление начало приходить в себя в конце 2009 года, ускорило рост в 2010 году, и продолжило его в 2011 году. Поставки, особенно из Австралии, где добывается более чем 40% циркониевых руд, долго не увеличивались, и другие производители были вынуждены поставить на рынок приблизительно 0,5 млн тонн своих запасов в течение 2008-2010 гг. Дефицит на рынке, вместе со снижением уровня запасов, привел к повышению цен, которое началось в начале 2009 года. К январю 2011 года австралийские премиальные цены на циркон были на рекордных уровнях после роста на 50% по сравнению с началом 2009 года и продолжили повышаться дальше в 2011-2012 гг.
В 2008 году цены на циркониевую губку выросли ввиду подорожания цирконового песка, являющегося сырьевым материалом для производства металла. Цены на промышленные сорта циркония увеличились на 7-8% - до 100 долл./кг, а на металл для ядерных реакторов - на 10% - до 70 - 80 долл. В конце 2008 года и начале 2009 года последовало некоторое снижение цен, однако уже со второй половины 2009 года цены на цирконий снова возобновили рост, приче таким образом, что средние цены на цирконий в 2009 году оказались выше, чем в 2008 году. В 2012 году цены на цирконий выросли до 110 долл./кг.

Несмотря на более низкое потребление в 2009 году, цены за циркон не падали резко, поскольку крупные производители сократили объемы производства и опустили запасы. В 2010 году производство не могло идти в ногу со спросом, прежде всего потому что китайский импорт циркона вырос на более чем на 50% в 2010 году до 0,7 млн. тонн. Спрос на циркон, как предсказывают, будет увеличиваться ежегодно на 5,4% до 2015 года, но производственные мощности могут увеличиваться только на 2,3% в год. Дополнительная поставка поэтому продолжит быть ограниченной, и цены могут продолжить расти, пока не заработают новые проекты.
Согласно отчету о научно-исследовательской работе, изданному Global Industry Analysts (GIA), глобальный рынок циркония, как ожидают, достигнет 2,6 млн метрических тонн к 2017 году. Отчет обеспечивает оценки продаж и прогнозы с 2009 по 2017 год на различных географических рынках, включая Азиатско-Тихоокеанский регион, Европу, Японию, Канаду и США.
Рост в международной промышленности ядерной энергии увеличит спрос на цирконий, так же как увеличит его производственные мощности глобально. Другие факторы роста - увеличивающийся спрос в Азиатско-Тихоокеанском регионе, а также в производстве керамической плитки по всему миру.

Производство циркония и его сплавов, содержащих бор, требует тщательного контроля. Так как в литературе химические методы определения бора в металлическом цирконии и его сплавах описаны не были, то целью настоящей работы явилась разработка простого химического метода определения содержания бора в металлическом цирконии и его сплавах, в частности в сплавах с небольшим содержанием ниобия.
В производстве циркония йодидный метод имеет в отличие от производства титана промышленное значение.
Содержится в выбросах производств циркония, катализаторов органического синтеза.
Гафний получают только как побочный продукт производства циркония реакторного сорта. Основное его применение - изготовление регулирующих стержней в ядерных реакторах. Общее потребление не превышает в настоящее время 75 % производства. Однако исследование новых областей применения: изготовление высокотемпературных сплавов, нитей накаливания, геттеров, порошка для ламп-вспышек, детонаторов - может сущесг-венно увеличить спрос на металл. Отделение гафния от циркония - дорогостоящий процесс, причем обычно расходы по отделению распределяются поровну между стоимостью обоих металлов.
Полной аналогии в свойствах продуктов плазменно-фторидной и экстракционно-фторидной технологий производства циркония нет, поскольку в экстракционно-фторидной технологии цирконий и гафний разделяют на гидрохимической стадии с помощью экстракции. В случае использования плазменно-фторидной технологии переработки циркона при сублимационной очистке циркония от примесей, указанных в табл. 3.4, гафний в основном следует за цирконием.
Метод разделения циркония и гафния электролизом расплавов представляет интерес для производства циркония, так как одновременно с получением металлического циркония происходит очистка его от гафния.
Сырьем для получения гафния служат циркониевые концентраты или продукты и полупродукты производства циркония.
Схема получения циркония по методу Кролля на заводе в Олбани. Все эти трудности вызывают необходимость тщательной очистки реагентов, применяемых при производстве циркония и гафния, особенно от кислорода, воды и азота, и ограничивают выбор мето дов, которые можно использовать для получения этих металлов.
Аппарат для получения. Металлический гафний можно получить теми же методами, которые применяются при производстве циркония. Тетрахлорид гафния подвергают очистке перегонкой в атмосфере водорода и затем восстанавливают магнием. Очистку гафниевой губки от хлорида магния производят на установках для очистки циркониевой губки, поскольку при этой операции нет серьезной опасности для загрязнения гафния цирконием или наоборот. Губчатый гафний переплавляют в дуге и разливают в медные изложницы.
Металлический гафний получают такими же способами, которые применяются и в производстве циркония: способ Кроля, видоизмененный способ Кроля с применением натрия в качестве восстановителя и способ де Бура, или иодидный процесс.
Иодидный процесс получения мягкого, ковкого гафния аналогичен таковому, применяемому в производстве циркония, поэтому аппаратура, с помощью которой получают иодидный гафний, примерно такая же, как и в случае получения циркония. По данным , температура осаждения гафния из тетраиодида составляет 1600 С, а циркония - 1400 С.
Обстоятельное изучение процесса Кроля в применении к титану может дать возможность внести некоторые изменения и в технологическую схему производства циркония; в частности, это касается упрощения аппаратуры, сокращения ряда операций и увеличения размеров агрегатов.
Для получения более чистых порошков ниобия и тантала лучше проводить восстановление газообразных хлоридов жидким магнием аналогично тому, как это делается в производстве циркония.

В 1945 г. в США было произведено всего 0 07 кг циркония, однако начиная с 1948 г. в связи с работами по созданию атомных реакторов производство циркония резко возросло и через несколько лет достигло нескольких десятков тонн.
Залежи руд циркония, который гораздо шире распространен в природе, чем, например, бериллий, имеются, по данным зарубежной печати, в США, Индии, Бразилии, Австралии, в ряде государств Африки. Производство циркония в США с 1947 по 1958 г. возросло в 3 тыс. раз.
Благодаря высоким антикоррозионным свойствам цирконий может применяться для изготовления деталей химической аппаратуры, медицинского инструмента и в других областях техники. Однако вряд ли производство циркония так быстро достигло бы современного уровня, если бы он не обладал еще одним специфическим свойством - малым поперечным сечением поглощения тепловых нейтронов.
Технология и оборудование, применяемые для получения гафния по способу Кроля, по существу такие же, как и в производстве металлического циркония. Видоизменения по сравнениюс технологическим процессом производства циркония определяются заменой или изменением отдельных аппаратов, технологических операций и сорта исходных материалов. Здесь следует иметь в виду большую чувствительность тетрахлорида гафния к атмосферной влаге, большую устойчивость гафнилхлорида и несколько большую пирофорностк свежеполученной металлической губки.
Поскольку гафний извлекают попутн при получении реакторного циркония, его производство расте пропорционально выпуску последнего, причем на 50 кг циркони; получают приблизительно 1 кг гафния. Пользуясь этим расчетом i обрывочными сведениями о производстве циркония в отдельны. По прогноза ] Горного бюро США, опубликованным в 1975 г., потребность это страны в гафнии на рубеже XX - - XXI вв.
Спектра л ь н ы и а н а л и з циркония на примеси в значительной степени затруднен из-за того, что на фоне многолинейчатого спектра циркония трудно выделить слабые линии спектров малых концентраций примесей. Этот метод позволяет также определять малые концентрации фтора в металлическом цирконии, что весьма существенно в контроле производства электролитического циркония.
Поскольку гафний извлекают попутно при получении реакторного циркония, его производство растет пропорционально выпуску последнего, причем на 50 кг циркония получают приблизительно 1 кг гафния. За текущее десятилетие (1970 - 1980 гг.) мировая мощность атомных электростанций возрастет в 5 - 8 раз, соответственно возрастет производство циркония и гафния. Ведь каждый мегаватт мощности АЭС требует от 45 до 79 кг циркония для изготовления труб и других деталей. Кроме того, 25 - 35 % циркониевых труб в действующих реакторах необходимо ежегодно заменять. В результате для этих целей уже в середине 70 - х годов будет расходоваться примерно столько же циркония, как и для новых реакторов.
Фторидно-сублимационная технология очистки тетрафто-рида циркония от фторидов Al, Ca, Cu, Fe, Mg была хорошо освоена в СССР в 80 - х годах на Приднепровском химическом заводе при разработке и освоении экстракционно-фторидной технологии производства ядерно-чистого циркония.
Са, Си, Fe, Mg, Th) находится в виде фторидной композиции, получаемой при сублимационной очистке циркония. При крупнотоннажном плазменном производстве циркония и кремния накопленная масса этих отходов может стать со временем значительной; для их переработки можно использовать плазменные и частотные технологии извлечения указанных компонентов в виде дисперсных оксидов или металлов (см. гл.
При переработке 1 т циркона и извлечении из него циркония и кремния в виде фторидов в отходах остаются 4 6 кг А1; 0 1 кг Са; 0 4 кг Си; 1 3 кг Fe; 1 1 кг Mg; 0 3 - 0 4 кг Th; 0 3 - 0 4 кг U; 0 3 кг Ti; т.е. 8 6 кг металлов, из которых основная часть (А1, Са, Си, Fe, Mg, Th) находится в виде фторидной композиции, получаемой при сублимационной очистке циркония. При крупнотоннажном плазменном производстве циркония и кремния накопленная масса этих отходов может стать со временем значительной; для их переработки можно использовать плазменные и частотные технологии извлечения указанных компонентов в виде дисперсных оксидов или металлов (см. гл.
В 1945 г. в США было произведено всего 0 07 кг циркония, однако начиная с 1948 г. в связи с работами по созданию атомных реакторов производство циркония резко возросло и через несколько лет достигло нескольких десятков тонн. В результате технология производства циркония, который несколько лет назад был редкостью, ныне более прогрессивна, чем технология получения многих других металлов, известных и применяющихся уже в течение десятилетий.
По принципу нагрева вакуумные дуговые печи относятся к дуговым печам прямого действия. Вакуумные дуговые печи являются одним из новых видов электротермического оборудования. Появление их вызвано увеличением производства циркония, титана, молибдена и некоторых других тугоплавких и химически активных материалов.
Но и в этом случае он не может быть применен без предварительной химической очистки (см. раздел 15.5) от всегда сопутствующего ему в природе элемента гафния, обладающего сходными с цирконием химическими свойствами. Гафний, извлекаемый в производстве циркония реакторного сорта, является отличным материалом для изготовления регулирующих стержней реактора.
Гафний находится в IV группе периодической системы элементов Д. И. Менделеева и входит в подгруппу титана. Он относится к рассеянным элементам, не имеющим собственных минералов; в природе сопутствует цирконию. В настоящее время его получают в виде побочного продукта при производстве циркония. По химическим и физическим свойствам гафний близок к цирконию, но значительно отличается от последнего по ядерным свойствам.
В химической промышленности молибден используют в виде прокладок и болтов для горячего ремонта (заправки) футерованных стеклянной плиткой сосудов, применяющихся при работе с серной кислотой и кислыми средами, в которых происходит выделение водорода. В изделиях, работающих в серной кислоте, применяют также молибденовые термопары и вентили, а молибденовые сплавы служат в качестве футеровки реакторов в установках, предназначенных для производства и-бутилхлорида путем реакций с участием соляной и серной кислот при температурах, превышающих 170 С. К числу разнообразных применений, в которых используется молибден, относят также процессы жидкофазного гидрохлорирования, производства циркония и сверхчистого тория.

За государственной границей остались предприятия, на которых созданы пилотные и промышленные установки, работающие по новым электротехнологиям. Например, наУльбинском металлургическом заводе (Казахстан) осталась промышленная установка по плазменной конверсии обогащенного по изотопу U-235 гексафторида урана на оксиды урана для изготовления оксидного ядерного топлива и плавиковую кислоту ; на Приднепровском химическом заводе (Украина) - промышленное оборудование для производства циркония и гафния из фторидного сырья по технологии холодный тигель; в НИИ стабильных изотопов (Грузия) - пилотная высокочастотная установка по получению изотопно-обогащенного (по изотопу В-10) карбида бора методом прямого индукционного нагрева; высокочастотная установка такого же типа осталась в НПО Порошковой металлургии в Белоруссии. Не лучшим образом обстоят дела и на предприятиях, оставшихся в РФ.
За государственной границей остались предприятия, на которых созданы пилотные и промышленные установки, работающие по новым электротехнологиям. Например, на Ульбинском металлургическом заводе (Казахстан) осталась промышленная установка по плазменной конверсии обогащенного по изотопу U-235 гексафторида урана на оксиды урана для изготовления оксидного ядерного топлива и плавиковую кислоту ; на Приднепровском химическом заводе (Украина) - промышленное оборудование для производства циркония и гафния из фторидного сырья по технологии холодный тигель; в НИИ стабильных изотопов (Грузия) - пилотная высокочастотная установка по получению изотопно-обогащенного (по изотопу В-10) карбида бора методом прямого индукционного нагрева; высокочастотная установка такого же типа осталась в НПО Порошковой металлургии в Белоруссии. Не лучшим образом обстоят дела и на предприятиях, оставшихся в РФ.
Рассеянные редкие металлы объединены по признаку рассеяния их в земной коре. Обычно рассеянные элементы находятся в виде изоморфной примеси в решетках других минералов и извлекаются попутно из отходов металлургич. Ga - из отходов алюминиевого производства, In - из отходов производства цинка и свинца, Т1 - из пылей обжига различных сульфидных концентратов, Ge - из от-ходов цинкового и медного производств, а также отходов переработки углей, Re - из полупродуктов молибденового производства, Ш извлекают попутно в производстве циркония. Рассеянные элементы Se и Те, встречающиеся как примеси в различных природных сульфидах, извлекаются либо из отходов сернокислотного производства, либо при металлургич.
Сырьевая база циркония включает два богатых им минерала - циркон и бадделеит, содержащие 45 6 % и 69 1 % циркония соответственно. В этих минералах цирконию сопутствует гафний - металл, имеющий высокое сечение поглощения тепловых нейтронов. Поэтому любая технология выделения и аффинажа циркония предусматривает очистку его от гафния. В начале 80 - х годов в СССР была создана новая технология производства циркония, включающая спекание циркона с карбонатом натрия, последующее выщелачивание силиката натрия, растворение циркония в азотной кислоте, экстракционное отделение от гафния и аффинаж:; затем цирконий реэкстрагируют и доводят технологический цикл до производства тетрафторида циркония, из которого при кальцийтермической плавке восстанавливают цирконий. Полученный цирконий направляют на производство сплавов для изготовления труб ТВЭЛов.
Сырьевая база циркония включает два богатых им минерала - циркон и бадделеит, содержащие 45 6 % и 69 1 % циркония соответственно. В этих минералах цирконию сопутствует гафний - металл, имеющий высокое сечение поглощения тепловых нейтронов. Поэтому любая технология выделения и аффинажа циркония предусматривает очистку его от гафния. В начале 80 - х годов в СССР была создана новая технология производства циркония, включающая спекание циркона с карбонатом натрия, последующее выщелачивание силиката натрия, растворение циркония в азотной кислоте, экстракционное отделение от гафния и аффинаж; затем цирконий реэкстрагируют и доводят технологический цикл до производства тетрафторида циркония, из которого при кальцийтермической плавке восстанавливают цирконий. Последующая технология включает электронно-лучевой аффинаж. Полученный цирконий направляют на производство сплавов для изготовления труб ТВЭЛов.
Цирконий соответственно строению электронной оболочки и, следовательно, своему месту в периодической системе элементов Д. И. Менделеева является аналогом титана в физико-химическом отношении. Для металла циркония это выражается в подобии его титану в отношении физических, механических, технологических, коррозионных свойств и характера образуемых сплавов. Поэтому в последние 15 - 20 лет происходит широкое освоение циркония: разработка методов получения и осуществление производства циркония высокой чистоты, детальное исследование его свойств и сплавов.
Для карботермического восстановления урана из оксидного сырья можно использовать технику и технологию холодного тигля, основанную на прямом частотном индукционном нагреве шихты UsOg xCj при котором используется ее собственная или индуцированная проводимость. Высокочастотная технология холодного тигля разработана в настоящее время применительно к синтезу бескислородной керамики (карбиды, нитриды и различные керамические композиции; см. гл. В главах 7, 8 и 14 показаны схемы индукционных установок и металлургических печей для синтеза бескислородных керамических материалов, для плавки и рафинирования металлов в дискретном и непрерывно-последовательном режимах по технологии холодный тигель. Эта технология и разработанная техника могут быть, в принципе, использованы в крупномасштабной технологии карботермического восстановления урана из оксидного сырья, однако необходимо проведение НИОКР для решения технологических и аппаратурных проблем. В результате комплекса НИОКР, проведенных в 70 - 80 - х годах, в настоящее время арсенал плазменного и частотного оборудования стал значительно богаче. Так, в 80 - х годах появилось металлургическое оборудование типа холодный тигель, работающее на частоте несколько килогерц, применяемое для производства циркония, гафния, редких и редкоземельных металлов, включая скандий; появились металлодиэлектрические реакторы, прозрачные к электромагнитному излучению в области радиочастот, используемые для высокотемпературных синтезов бескислородной керамики, для плавления оксидной керамики и даже для остекловывания радиоактивных отходов. Кроме того, проведены НИОКР по созданию комбинированного плазменно-частотного оборудования для решения химико-технологических и металлургических проблем, для некоторых металлургических приложений оборудование мегаваттной мощности уже создано и нашло практическое применение. Результаты этих НИОКР будут изложены в последующих главах; очень вероятно, что такое оборудование будет использовано и для внедрения в промышленное производство технологии карботермического восстановления урана из оксидного сырья.
Для карботермического восстановления урана из оксидного сырья можно использовать технику и технологию холодного тигля, основанную на прямом частотном индукционном нагреве шихты UsOg хС, при котором используется ее собственная или индуцированная проводимость. Высокочастотная технология холодного тигля разработана в настоящее время применительно к синтезу бескислородной керамики (карбиды, нитриды и различные керамические композиции; см. гл. В главах 7, 8 и 14 показаны схемы индукционных установок и металлургических печей для синтеза бескислородных керамических материалов, для плавки и рафинирования металлов в дискретном и непрерывно-последовательном режимах по технологии холодный тигель. Эта технология и разработанная техника могут быть, в принципе, использованы в крупномасштабной технологии карботермического восстановления урана из оксидного сырья, однако необходимо проведение НИОКР для решения технологических и аппаратурных проблем. В результате комплекса НИОКР, проведенных в 70 - 80 - х годах, в настоящее время арсенал плазменного и частотного оборудования стал значительно богаче. Так, в 80 - х годах появилось металлургическое оборудование типа холодный тигель, работающее на частоте несколько килогерц, применяемое для производства циркония, гафния, редких и редкоземельных металлов, включая скандий; появились металлодиэлектрические реакторы, прозрачные к электромагнитному излучению в области радиочастот, используемые для высокотемпературных синтезов бескислородной керамики, для плавления оксидной керамики и даже для остекловывания радиоактивных отходов. Кроме того, проведены НИОКР по созданию комбинированного плазменно-частотного оборудования для решения химико-технологических и металлургических проблем, для некоторых металлургических приложений оборудование мегаваттной мощности уже создано и нашло практическое применение. Результаты этих НИОКР будут изложены в последующих главах; очень вероятно, что такое оборудование будет использовано и для внедрения в промышленное производство технологии карботермического восстановления урана из оксидного сырья.

Циркониевые минералы, руды и рудные концентраты

Содержание циркония в земной коре относительно высокое - 0,025 % (по массе). По распространенности он превосхо­дит медь, цинк, олово, никель и свинец. Известно около 20 минералов циркония. Они концентрируются главным образом в гранитных и щелочных (нефелин-сиенитовых) пегматитах. Ос­новными промышленными источниками в настоящее время слу­жат минералы бедделеит и циркон. Сырьем могут служить также минералы эвдиалит и эвколит, но они значительно бедней по содержанию циркония.

Бадделеит. По составу представляет собой почти чистый диоксид циркония. В наиболее чистых образцах до 98 % ZrOa. Обычно содержит примесь гафния (до нескольких про­центов), изредка уран (до 1 %) и торий (до 0,2 %). Место­рождения редки. Плотность минерала 5,5-6. Наиболее круп­ное месторождение найдено в Бразилии.

Основные методы обогащения руд - гравитационные. Для отделения минералов железа и ильменита используют элек­тромагнитное обогащение.

Циркон - ортосиликат циркония ZrSi04 (67,2 % Zr02, 32,8 % Si02). Это наиболее распространенный минерал цир­кония. Концентрируется главным образом в пегматитах гра­нитной и особенно щелочной магмы. Часто встречается в россыпях, образующихся при разрушении коренных пород. Циркон большей частью имеет коричневый цвет, плотность минерала 4,4-4.7 г/см3, твердость 7,5 по минералогической шкале. Минерал обычно содержит гафний (0,5-4 %). Основные запасы циркона сосредоточены в прибрежно-морских россы­пях. Здесь циркон накапливается вместе с ильменитом, ру­тилом, монацитом и рядом других минералов.

Выпускаемые в СССР цирконовые концентраты первого сор­та должны содержать не менее 65% Zr02. В них лимитирует­ся содержание следующих примесей, % (не 6onee):FeO 0,1; Ті02 0,4; А1203 2,0; СаО и MgO 0,1; P2Os 0,15. Концентра­ты второго сорта должны содержать не менее 60 % Zr02, примеси не лимитируются.

Наиболее крупные месторождения циркона за рубежом рас­положены в Австралии, Индии, Бразилии, ЮАР, США. В СССР циркон найден на Урале, Украине и в других районах страны.

Эвдиалит и эвколит. Состав эвдиалита может быть выра­жен общей эмпирической формулой: (Na, Ca)6Zr [ОН, С1]2.

Эвколит - разновидность эвдиалита, содержащего ионы Fe2+. Химический состав эвдиалита, %: Na20 11,6-17,3; Zr02 12-14,5; FeO 3,1-7,1; Si02 47,2-51,2; СІ 0,7-1,6. Цвет минерала - розовый или малиновый. Минерал легко раз­лагается кислотами.

Эвдиалит и эвколит встречаются в магматических щелоч­ных породах (нефелиновых сиенитах). Известны месторожде­ния в СССР (на Кольском полуострове), Португалии, Грен­ландии, Трансваале, Бразилии и других странах.

В капиталистических странах в 1986 г. было добыто 830 тыс. т цирконовых концентратов, в том числе в Австра­лии - 470, ЮАР - 150, США - 85.

Продукты переработки цирконовых концентратов

Цирконовые концентраты служат исходным материалом для производства ферросиликоциркония, ферроциркония и химиче­ских соединений циркония: диоксида циркония, фтороцирко - ната калия и тетрахлорида циркония, . а также соединений гафния.

Ферросиликоцирконий непосредственно выплавляют из цир­коновых концентратов. Технический диоксид циркония служит исходным материалом для получения ферроциркония и исполь­зуется в производстве огнеупоров и керамики. Диоксид цир­кония высокой чистоты применяют для высоко­качественных огнеупорных изделий и порошкообразного цир­кония. Фтороцирконат калия и тетрахлорид циркония исполь­зуют главным образом для производства металлического цир­кония. Ниже рассмотрены основные способы производства со­единений циркония.

Производство диоксида циркония

Разложение концентрата

Циркон практически не разлагается соляной, серной и азотной кислотами. Для его разложения с целью перевода циркония в раствор используют большей частью спекание (или сплавление) с содой или спекание с карбонатом каль­ция (мелом). Образующиеся цирконаты натрия или кальция растворяются в кислотах, из раствора затем выделяют гид­роксид или основные соли циркония. Последние термически разлагают, получая диоксид циркония.

Разложение циркона спеканием с карбонатом натрия. При 1100-1200 С со­да реагирует с цирконом с образованием метацирконата и ортосиликата натрия:

ZrSi04 + 3 Na2C03 = Na2Zr03 + Na4Si04 + 2 C02. (4.23)

Процесс можно проводить в барабанных печах непрерывно­го действия, питая печь гранулированной шихтой (размер гранул 5-10 мм). Грануляцию проводят на чашевом грануля­торе при увлажнении шихты. Измельченный спек первоначаль­но выщелачивают водой для извлечения в раствор большей части ортосиликата натрия. Осадки после водного выщелачи­вания обрабатывают соляной или серной кислотой. В первом случае получают солянокислый раствор, содержащий основной хлорид цирконила ZrOCl2, во втором случае - растворы, со­держащие основной сульфат циркония Zr(0H)2S04. При кисло­тной обработке образуется кремниевая кислота, для коагу­ляции которой в пульпу добавляют флокулянт полиакриламид. Осадки отделяют от цирконийсодержащих растворов фильтра­цией.

Разложение циркона спеканием с карбонатом кальция. Процесс основан на взаимодействии циркона с СаС03:

ZrSi04 + 3 СаС03 = CaZr03 + Ca2Si04 + З С02. (4.24)

Эта реакция протекает с достаточной скоростью лишь при 1400-1500 С. Однако добавки в шихту небольшого количест­ва хлорида кальция (~5 % от массы цирконового концентра­та) позволяют снизить температуру спекания до 1100- 1200 °С. Ускорение процесса в присутствии малых добавок СаС12 объясняется, вероятно, частичным образованием жид­кой фазы (температура плавления СаС12 774 С), а также

Цирконовий концентрат CaCOj I СаС1г

Вь/щелачиВание на холоду

„ І Раствор в сброс

Ршс.45. Технологическая схема переработки цирконового концентрата по способу спекания с карбонатом кальция

Увеличением структурных дефектов в кристаллах компонентов шихты под действием хлористого кальция.

Обработку спеков соляной кислотой ведут в две стадии. Первоначально при обработке на холоду 5-10 %-ной соляной кислотой растворяется избыточный оксид кальция и разлага­ется ортосиликат кальция. Образующаяся коллоидная кремни­евая кислота удаляется вместе с раствором. Нерастворив - шийся остаток, содержащий цирконат кальция, выщелачивают 25-30 %-ной НСІ при нагревании до 70-80 С, получая раст­воры, содержащие основной хлорид циркония. Примерно по тем же режимам можно выщелачивать известковые спеки азот­ной кислотой, получая растворы, содержащие Zr(0H)2(N03)2. Преимущества последней состоят в возможности утилизации азотнокислых маточных растворов после извлечения из них циркония и получения азотнокислых солей.

В случае применения серной кислоты можно выщелачивать известковый спек в одну стадию без существенных затрудне­ний в отношении отделения раствора от осадка кремниевой кислоты. Обработку спека проводят раствором 300-400 г/л HjSC^ при температуре не выше 80-90 С. В этих условиях осадки содержат гидратированные сульфаты кальция - CaS04 2 Н20 и CaS04-0,5 Н20, что обеспечивает хорошую фи­льтрацию осадков. С целью снижения потерь циркония суль­фатный кек, количество которого велико (~6 т на 1 т Zr02) многократно промывают водой. В некоторых производственных схемах рационально сочетается выщелачивание известковых спеков соляной и серной кислотами, что обеспечивает полу­чение различных соединений циркония (рис. 45).

Выделение циркония из раство­ров и получение ZrOj

Растворы, полученные в результате выщелачивания содо­вых или известковых спеков, содержат цирконий (100-200 г/л) и примеси железа, титана, алюминия, кремния и др. В промышленной практике применяют четыре способа

Выделения циркония из растворов:

Выделение основного хлорида Zr(OH)2Cl2 7 HjO.

Выделение основных сульфатов циркония.

Осаждение кристаллогидрата сульфата циркония Zr(S04)2-4 Н20.

Кристаллизация сульфато-цирконатов натрия или аммо­ния (дубитель для кожевенной промышленности).

Ниже рассмотрены наиболее распространенные первые два способа.

Выделение основного хлорида. Способ основан на малой растворимости кристаллогидрата Zr(OH)2Cl2-7 Н20 в концентрированной соляной кислоте, в то время как в воде и разбавленной НС1 растворимость вы­сокая:

Концентрация

НС1, г/л 7,2 135,6 231,5 318 370

Растворимость при 20 °С Zr(OH)2 * 7 Н20,

Г/л 567,5 164,9 20,5 10,8 17,8

Растворимость основного хлорида в концентрированной НСІ при 70°С примерно в 5 раз выше, чем при 20 С. Выпа­риванием нельзя достигнуть концентрации НС1 выше ~220 г/л, так как образуется азеотропная смесь. Однако в кис­лоте такой концентрации растворимость Zr(OH)2Cl2-7 Н20 невысокая (~25г/л), что позволяет после охлаждения рас­твора выделить в кристаллы 70-80 % циркония, содержащего­ся в растворе. Основной хлорид выделяется в виде крупных кристаллов, имеющих форму тетрагональных призм, легко от­деляемых от маточного раствора.

Способ дает возможность получить соединения циркония высокой чистоты, так как большинство примесей остается в солянокислом маточном растворе.

Из основного хлорида легко можно получить другие сое­динения циркония. Для получения Zr02 основной хлорид рас­творяют в воде и осаждают добавлением раствора аммиака гидроксид циркония. Прокаливанием последнего при 600-700 С получают диоксид с содержанием Zr02 99,6-99,8 %. Для получения других соединений (нитрата, фторидов) гидроксид растворяют в соответствующей кислоте.

Выделение основных сульфатов. Малорастворимые основные сульфаты, состав которых можно

Выразить общей формулой х ZrO2-у S03-z Н20 (дг>_у), выделя­ются из растворов при рН = 2-5-3 и мольном отношении S03: Zr02 в исходном растворе в пределах 0,55-0,9.

При нейтрализации сернокислого раствора, содержащего значительный избыток кислоты, содой или аммиаком, гидро­литическое выделение основного сульфата циркония не про­исходит. Это объясняется тем, что в таких растворах цир­коний находится в составе прочных анионов 2-, образующих с катионами натрия и аммония хорошо раствори­мые соли. Гидролиз наступает лишь в случае вывода части ионов SOf" из растворов, например добавлением ВаС12 или СаС12, что усложняет технологию.

Значительно проще гидролитическое выделение основных сульфатов из солянокислых или азотнокислых растворов, так как в этом случае в раствор вводится дозированное количе­ство сульфат-ионов (добавляют HjS04 или Na2S04).

Для осаждения основного сульфата в солянокислый рас­твор, содержащий 40-60 г/л циркония, добавляют H2S04

(0,5-0,7 моля на 1 моль Zr02), нейтрализацией и разбавле­нием доводят кислотность до 1-1,5 г/л по НС1, а затем на­гревают раствор до 70-80 С. В осадок выделяется 97-98 % циркония, его состав примерно соответствует формуле 2 Zr02 S03 5 HjO.

Осадок основного сульфата после промывки, фильтрации и сушки прокаливают для удаления S03 при 850-900 °С в муфе­льных печах, футерованных высокоглиноземистым огнеупором. Получаемый технический диоксид циркония содержит 97-98 % Zr02. Основные примеси следующие, %: Ті02 0,25-0,5; Si02 0,2-0,5; Fe203 0,05-0,15; CaO 0,2-0,5; S03 0,3-0,4.