Для отопления        25.09.2019   

Построить треугольник по стороне углу. Построение треугольника по трем элементам

Треугольник — это геометрическая фигура, которая образуется при соединении отрезками трёх точек, не принадлежащих одной прямой. Он однозначно определяется набором из трёх данных: тремя сторонами, двумя сторонами и углом между ними, или стороной и двумя прилежащими углами.

В качестве примера попробуем построить треугольник по стороне и двум прилежащим к ней углам?

Быстрая навигация по статье

Строим треугольник

Первым делом на прямой откладывается отрезок, равный длине заданной стороны. Концы отрезка отмечаем точками А и В.

Чтобы построить треугольник, нужно от точек А и В отложить заданные углы. Если заданы величины углов, то для построения воспользуйтесь транспортиром:

  • Нижнюю планку транспортира выравниваем по отрезку прямой;
  • Начало отсчёта устанавливаем в точке А для первого угла и в точке В — для второго;
  • Затем откладываем величины углов. Рядом с соответствующим делением шкалы ставим точки и обозначаем их М и N;
  • Соединяем прямыми точки А и М, В и N. Пересечение построенных прямых будет третьей последней вершиной треугольника С.

Таким образом по данной стороне и двум заданным прилежащим углам построен треугольник.

Графический угол

Часто для построения треугольника по данной стороне и двум заданным прилежащим углам, углы задаются графически. Задача усложняется, так как нужно построить угол, равный по величине заданному графическому углу.

Можно измерить величину заданного графически угла с помощью транспортира и получить величины прилежащих углов, а затем воспользоваться методом, описанным в предыдущем пункте и построить треугольник.

Используем циркуль

Для другого способа построения угла, соответствующего по величине заданному, понадобится циркуль:

  • Циркулем, с произвольным раствором, проводится окружность с центром в начальной точке угла. Пересечения окружности и сторон угла обозначим М и N;
  • Теперь вернёмся к отрезку АВ, равному стороне нужного треугольника. Не меняя раствор, от точки А проведите окружность и отметьте точку пересечения ее с отрезком АВ — получаем точку М1;
  • Вернитесь к заданному углу. Поставьте ножку циркуля в точку М и сделайте раствор равным МN;
  • Теперь, не меняя раствор циркуля, от точки М1 проведите окружность до пересечения её с первой окружностью — получаем точку N1;
  • Соедините прямой точки А и N1. Угол М1АN1 и будет равен заданному;
  • Так же строим второй угол в точке В. Пересечение сторон построенных углов и будет недостающей вершиной С.

Таким способом строиться треугольник с помощью циркуля по стороне и двум данным прилежащим углам при помощи циркуля.

Цели урока:

  • максимально донести до учащихся изучаемый материал;
  • развивать мышление, память, умение свободно пользоваться циркулем;
  • попытаться повысить активность и самостоятельность учащихся при выполнении заданий.

Оборудование:

  • школьный циркуль
  • транспортир,
  • линейка,
  • карточки для самостоятельной работы.

ХОД УРОКА

Тема урока: «Задачи на построение».

Сегодня мы будем учиться строить треугольники по трем заданным элементам с помощью циркуля и линейки.

Чтобы построить треугольник, нужно сначала уметь строить отрезок, равный заданному, и угол, равный заданному. Конечно, можно это сделать с помощью линейки с делениями и транспортира, но в математике требуется еще и уметь выполнять построения с помощью циркуля и линейки без делений.

Любая задача на построение включает в себя четыре основных этапа:

  • анализ;
  • построение;
  • доказательство;
  • исследование.

Анализ и исследование задачи необходимы так же, как и само построение. Необходимо посмотреть, в каких случаях задача имеет решение, а в каких – решения нет.

1. Построение отрезка, равного заданному.

2. Строим угол, равный заданному, с помощью циркуля и линейки.

А вот теперь перейдем к построению треугольников по трем элементам.

3. Построение треугольника по двум сторонам и углу между ними.

Схема №3.

Дано Требуется построить Построение
1. Построить угол А, равный заданному углу.
2. На одной стороне угла отметить точку С так, чтобы отрезок АС был равен заданному отрезку b.
3. На другой стороне угла отметить точку В так, чтобы отрезок АВ был равен заданному отрезку с.
4. Соединить с помощью линейки точки В и С.

Построен треугольник АСВ по двум сторонам и углу между ними.

Самостоятельная работа к схеме 3.

Вариант 1.

Построить треугольник ВСН, если ВС = 3 см, СН = 4 см, С = 35є.

Вариант 2.

Построить треугольник СДЕ, у которого ДС = 4 см, ДЕ = 5 см, Д = 110є.

Подсказка. Перед построением треугольника необходимо сделать «от руки» чертеж треугольника, где показаны все заданные элементы.

4. Построение треугольника по стороне и прилежащим к ней углам.

Дано

Требуется построить

Построение

1. Произвольно начертить отрезок АВ, равный заданному отрезку c.
2. Построить угол А, равный заданному.
3. Построить угол В, равный заданному.

Точка пересечения двух сторон углов А и В – вершина треугольника С.

Построили треугольник АСВ по стороне и двум заданным углам.

Самостоятельная работа к схеме 4.

Вариант 1

Построить треугольник КМО, если КО = 6 см, К = 130є, О = 20є.

Вариант 2

Построить треугольник ВСР, если С = 15є, Д = 50є, СД = 3 см.

5. Построение треугольника по трем сторонам.

Дано

После построения любого треугольника, самостоятельно провести доказательство того, что получившийся треугольник – искомый, и по возможности провести исследование.

D С Построение треугольника по двум сторонам и углу между ними. hk h 1. Построим луч а. 2. Отложим отрезок АВ, равный P 1 Q Построим угол, равный данному. 4. Отложим отрезок АС, равный P 2 Q 2. В А Δ АВС искомый. Дано: Отрезки Р 1 Q 1 и Р 2 Q 2, Q1Q1 P1P1 P2P2 Q2Q2 а k Док-во: По построению AB=P 1 Q 1, AC=P 2 Q 2, A= hk. Построить. Построение.


При любых данных отрезках AB=P 1 Q 1, AC=P 2 Q 2 и данном неразвернутом hk искомый треугольник построить можно. Так как прямую а и точку А на ней можно выбрать произвольно, то существует бесконечно много треугольников, удовлетворяющих условиям задачи. Все эти треугольники равны друг другу (по первому признаку равенства треугольников), поэтому принято говорить, что данная задача имеет единственное решение.


D С Построение треугольника по стороне и двум прилежащим к ней углам. h 1 k 1, h 2 k 2 h2h2 1. Построим луч а. 2. Отложим отрезок АВ, равный P 1 Q Построим угол, равный данному h 1 k Построим угол, равный h 2 k 2. В А Δ АВС искомый. Δ АВС искомый. Дано: Отрезок Р 1 Q 1 Q1Q1 P1P1 а k2k2 h1h1 k1k1 N Док-во: По построению AB=P 1 Q 1, В= h 1 k 1, А= h 2 k 2. Построить Δ. Построение.


С 1. Построим луч а. 2. Отложим отрезок АВ, равный P 1 Q Построим дугу с центром в т. А и радиусом Р 2 Q Построим дугу с центром в т.В и радиусом P 3 Q 3. В А Δ АВС искомый. Дано:Отрезки Р 1 Q 1, Р 2 Q 2, P 3 Q 3. Q1Q1 P1P1 P3P3 Q2Q2 а P2P2 Q3Q3 Построение треугольника по трем сторонам. Док-во: По построению AB=P 1 Q 1, AC=P 2 Q 2 CA= P 3 Q 3, т. е. стороны Δ ABC равны данным отрезкам. Построить Δ. Построение.


Задача не всегда имеет решение. Во всяком треугольнике сумма любых двух сторон больше третьей стороны, поэтому если какой-нибудь из данных отрезков больше или равен сумме двух других, то нельзя построить треугольник, стороны которого равнялись бы данным отрезкам.

Рассмотрим, наконец, задачу, решение которой приводит к построению треугольника по стороне и двум углам:

На другом берегу реки (черт. 72) видна веха A . Требуется, не переправляясь через реку, узнать расстояние до нее от вехи В на этом берегу.

Поступим так. Отмерим от точки В по прямой линии какое-нибудь расстояние ВС и у концов его В и С измерим углы 1 и 2 (черт. 73). Если теперь на удобной местности отмерить расстояние DE, равное ВС , и построить у его концов углы а и b (черт. 74), равные углам 1 и 2, то в точке пересечения их сторон получим третью вершину F треугольника DEF. Легко убедиться, что треугольник DEF равен треугольнику АВС ; действительно, если представим себе, что треугольник DEF наложен на ABC так, что сторона DE совпала с равной ей стороною ВС , то уг. а совпадет с углом 1, угол b – с углом 2, и сторона DF пойдет по стороне ВA , а сторона EF по стороне СА. Так как две прямые могут пересечься только в одной точке, то и вершина F должна совпасть с вершиной A . Значит, расстояние DF равно искомому расстоянию ВА.

Задача, как видим, имеет т о л ь к о о д н о решение. Вообще по стороне и двум углам, прилегающим к этой стороне, можно построить т о л ь к о о д и н треугольник; других треугольников с такою же стороною и такими же двумя углами, прилегающими к ней в тех же местах, быть не может. Все треугольники, имеющие по одной одинаковой стороне и по два одинаковых угла, прилегающих к ней в тех же местах, могут быть наложением приведены в полное совпадение. Значит, это признак, по которому можно установить полное равенство треугольников.

Вместе с прежде установленными признаками равенства треугольников, мы знаем теперь следующие три:

Т р е у г о л ь н и к и р а в н ы:

п о т р е м с т о р о н а м;

п о д в у м с т о р о н а м и у г л у м е ж д у н и м и;

п о с т о р о н е и д в у м у г л а м.

Эти три случая равенства треугольников мы будем в дальнейшем обозначать ради краткости так:

по трем сторонам: ССС ;

по двум сторонам и углу между ними: СУС ;

по стороне и двум углам: УСУ .


Применения

14. Чтобы узнать расстояние до точки A на другом берегу реки от точки В на этом берегу (черт. 5), отмеряют по прямой линии какую-нибудь линию ВС, затем при точке В строят угол, равный AВС , по другую сторону ВС , а при точке С – таким же образом угол, равный АСВ. Расстояние точки D пересечения сторон обеих сторон углов до точки В равно искомому расстоянию АВ . Почему?

Р е ш е н и е. Треугольники ABC и ВDС равны по одной стороне (ВС ) и двум углам (уг. DCB = уг. АСВ ; уг. DBC = уг. ABC .) Следовательно, АВ = ВD, как стороны, лежащие в равных треугольниках против равных углов.

Решение приведено в учебнике.

Даны три отрезка M 1 N 1 , M 2 N 2 , M 3 N 3 (рис. 148, а). Требуется построить такой треугольник ABC, у которого две стороны, скажем АВ и АС, равны соответственно данным отрезкам M 1 N 1 и M 2 N 2 , а высота АН равна отрезку M 3 N 3 . Проведем решение задачи по описанной схеме.


Допустим, что искомый треугольник ABC построен (рис. 148, б). Мы видим, что сторона АВ и высота АН являются гипотенузой и катетом прямоугольного треугольника АВН. Поэтому построение треугольника ABC можно провести по такому плану: сначала построить прямоугольный треугольник АВН, а затем достроить его до всего треугольника ABC. Построение

Строим прямоугольный треугольник АВН, у которого гипотенуза АВ равна отрезку M 1 N 1 , а катет АН равен данному отрезку M 3 N 3 . Как это сделать, мы знаем (задача 314, в). На рисунке 149, а изображен построенный треугольник АВН. Затем проводим окружность радиуса M 2 N 2 с центром в точке А. Одну из точек пересечения этой окружности с прямой ВН обозначим буквой С. Проведя отрезки ВС и АС, получим искомый треугольник ABC (рис. 149, б).


Доказательство

Треугольник ABC действительно искомый, так как по построению сторона АВ равна M 1 N 1 , сторона АС равна M 2 N 2 , а высота АН равна M 3 N 3 , т. е. треугольник ABC удовлетворяет всем условиям задачи. Исследование

Нетрудно сообразить, что задача имеет решение не при любых данных отрезках M 1 N 1 , M 2 N 2 , М 3 N 3 . В самом деле, если хотя бы один из отрезков M 1 N 1 и M 2 N 2 меньше M 3 N 3 , то задача не имеет решения, так

как наклонные АВ и АС не могут быть меньше перпендикуляра АН. Задача не имеет решения и в том случае, когда M 1 N 1 =M 2 N 2 =M 3 N 3 (объясните почему). В остальных случаях задача имеет решение. Если М 1 N 1 >М 3 N 3 , а M 2 N 2 =M 3 N 3 , то задача имеет единственное решение: в этом случае сторона АС совпадает с высотой АН и искомый треугольник является прямоугольным (рис. 149, в). Если М 1 N 1 >М 3 N 3 , а M 2 N 2 =M 1 N 1 то задача также имеет единственное решение: в этом случае треугольник ABC равнобедренный (рис. 149, г). И наконец, если M 2 N 2 >M 3 N 3 и М 1 N 1 ≠М 2 N 2 , то задача имеет два решения - треугольники ABC и АВС 1 на рисунке 149, д.