Полиэтиленовые трубы        28.06.2020   

Описание гэс принцип работы схема. Общее понятие о гэс. Гидроэнергетика в девятнадцатом столетии

Перспектива дефицита и дороговизна минеральных энергоресурсов заставляют уделять больше внимания возобновляемым источникам энергии. Самым эффективным из них на сегодняшний день является гидроэнергия. Современные ГЭС аккумулируют ее и превращают в электричество, обеспечивая низкую себестоимость киловатта и высокую мощность.

Принцип работы ГЭС – это использование силы падающей воды для вращения вала электрогенератора. Напор воды подается на лопасти турбины, которая раскручивает ротор. Электрический ток от генератора поступает на трансформаторы, выравнивается, передается на распределительные станции и оттуда – по линиям электропередач к конечному потребителю. Выработка энергии напрямую зависит от напора воды в ГЭС, количества и типа установленных турбин.

Естественный перепад высот на реках, который обеспечил бы нужный напор, почти не встречается в природе. Поэтому самой сложной задачей при возведении конструкции является строительство напорных сооружений. В зависимости от их типа и классифицируют гидростанции:


ГАЭС строят при необходимости компенсировать резкий рост энергопотребления в пиковые часы. Наличие гидроаккумулятора позволяет достигнуть максимального КПД в отдельные моменты, а когда он не нужен, переключить станцию в режим насоса и накопления воды. При этом она работает от собственного электричества, полученного в режиме генератора.

Особенности возведения и эксплуатации

Выбор определенной модификации ГЭС определяется особенностями местности и расчетной эффективностью речного потока. Общая схема всех видов в обязательном порядке включает сорозаборные решетки на входных отверстиях, центр управления и контроля, площадку для обслуживания электрооборудования и трансформаторы, преобразующие вырабатываемое электричество в 220 V или другой необходимый стандарт напряжения.

Для сооружения генератора ГЭС используют распространенные унифицированные элементы. Все оборудование износостойкое, обладает большим сроком эксплуатации и минимальными требованиями к обслуживанию. Но в целом устройство каждой станции уникально. Конструкцию, привязанную к конкретному географическому району, нельзя повторить, как нельзя найти и две идентичные по условиям бассейна реки.

Разобравшись, как работает гидроэлектростанция, можно сформулировать ее преимущества относительно ТЭС и АЭС:

  • вода - возобновляемый и чистый источник энергии;
  • высокий КПД;
  • отсутствие расходов на топливо;
  • снижение затрат на обслуживание и персонал;
  • низкий уровень риска аварий.

Причина, по которой выработка электроэнергии ГЭС составляет лишь около 20% от мирового производства электричества, заключается в необратимом влиянии на экосистему по всему руслу реки и ирригацию прилегающих территорий. Размеры всего гидроузла, включая водохранилище, достигают сотен тысяч га. До сих пор не существует надежных методов комплексной оценки масштабов такого влияния.

Технические нюансы

ГЭС выходят на проектную мощность быстрее, чем другие электростанции. Вследствие того, что природный напор воды непостоянен, сооружения без компенсаторных механизмов выдают разную производительность. В качестве основной характеристики для гидроэлектростанций принято брать установленную мощность всех ее генераторов. В зависимости от этого различают:

  • установленная мощность свыше 1000 МВт;
  • от 100 до 1000 МВт;
  • от 10 до 100 МВт;
  • до 10 МВт.

По высоте напорного потока ГЭС делятся на:

  • высоконапорные - свыше 60 м;
  • средненапорные - от 25 м;
  • низконапорные - от 3 до 25 м.

От силы потока зависит выбор типа турбины. В высоконапорных ГЭС используют ковшевую, не погружаемую конструкцию. Вода в нее подается сильной струей из сопел и толкает ковши. При более низком напоре применяют радиально-осевые или поворотно-лопастные аппараты. Они полностью погружены в емкость с водой, имеют различный наклон оси, строение и количество лопастей, за счет своей конструкции раскручиваются при потоке небольшой силы. Камеры для турбин производят из стали или железобетона. Здание с электрооборудованием может располагаться непосредственно внутри плотины, рядом с ней или, в случае деривационного типа, далеко от источника воды. В состав сооружений ГЭС включают шлюзы для судов, рыбоходы, водосбросы, ирригационные отводы при условии, что такое дополнение необходимо для поддержания действующей транспортной, сельскохозяйственной или экосистемы в пойме реки.

Гидроэлектростанция

Гидроэлектроста́нция (ГЭС) - электростанция , в качестве источника энергии использующая энергию водного потока . Гидроэлектростанции обычно строят на реках , сооружая плотины и водохранилища .

Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонобразные виды рельефа.

Особенности

Принцип работы

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Крупнейшие ГЭС в мире

Наименование Мощность,
ГВт
Среднегодовая
выработка, млрд кВт·ч
Собственник География
Три ущелья 22,40 100,00 р. Янцзы , г. Сандоупин, Китай
Итайпу 14,00 100,00 Итайпу-Бинасионал р. Парана , г. Фос-ду-Игуасу , Бразилия /Парагвай
Гури 10,30 40,00 р. Карони , Венесуэла
Черчилл-Фолс 5,43 35,00 Newfoundland and Labrador Hydro р. Черчилл, Канада
Тукуруи 8,30 21,00 Eletrobrás р. Токантинс , Бразилия

Гидроэлектростанции России

По состоянию на 2009 год в России имеется 15 гидроэлектростанций свыше 1000 МВт (действующих, достраиваемых или находящихся в замороженном строительстве), и более сотни гидроэлектростанций меньшей мощности.

Крупнейшие гидроэлектростанции России

Наименование Мощность,
ГВт
Среднегодовая
выработка, млрд кВт·ч
Собственник География
Саяно-Шушенская ГЭС 2,56 (6,40) 23,50 ОАО РусГидро р. Енисей , г. Саяногорск
Красноярская ГЭС 6,00 20,40 ОАО «Красноярская ГЭС» р. Енисей , г. Дивногорск
Братская ГЭС 4,52 22,60 ОАО Иркутскэнерго , РФФИ р. Ангара , г. Братск
Усть-Илимская ГЭС 3,84 21,70 ОАО Иркутскэнерго , РФФИ р. Ангара , г. Усть-Илимск
Богучанская ГЭС 3,00 17,60 ОАО «Богучанская ГЭС», ОАО РусГидро р. Ангара , г. Кодинск
Волжская ГЭС 2,58 12,30 ОАО РусГидро р. Волга , г. Волжский
Жигулёвская ГЭС 2,32 10,50 ОАО РусГидро р. Волга , г. Жигулевск
Бурейская ГЭС 2,01 7,10 ОАО РусГидро р. Бурея , пос. Талакан
Чебоксарская ГЭС 1,40 (0,8) 3,31 (2,2) ОАО РусГидро р. Волга , г. Новочебоксарск
Саратовская ГЭС 1,36 5,7 ОАО РусГидро р. Волга , г. Балаково
Зейская ГЭС 1,33 4,91 ОАО РусГидро р. Зея , г. Зея
Нижнекамская ГЭС 1,25 (0,45) 2,67 (1,8) ОАО «Генерирующая компания», ОАО «Татэнерго » р. Кама , г. Набережные Челны
Загорская ГАЭС 1,20 1,95 ОАО РусГидро р. Кунья , пос. Богородское
Воткинская ГЭС 1,02 2,60 ОАО РусГидро р. Кама , г. Чайковский
Чиркейская ГЭС 1,00 2,47 ОАО РусГидро р. Сулак , п. Дубки

Примечания:

Другие гидроэлектростанции России

Предыстория развития гидростроения в России

В Советский период развития энергетики упор делался на особую роль единого народнохозяйственного плана электрификации страны - ГОЭЛРО , который был утвержден 22 декабря 1920 года. Этот день был объявлен в СССР профессиональным праздником - Днём энергетика . Глава плана, посвященная гидроэнергетике - называлась «Электрификация и водная энергия». В ней указывалось, что гидроэлектростанции могут быть экономически выгодными, главным образом, в случае комплексного использования: для выработки электроэнергии, улучшения условий судоходства или мелиорации . Предполагалось, что в течение 10-15 лет в стране можно соорудить ГЭС общей мощностью 21 254 тыс. лошадиных сил (около 15 млн кВт), в том числе в европейской части России - мощностью 7394, в Туркестане - 3020, в Сибири - 10 840 тыс. л.с. На ближайшие 10 лет намечалось сооружение ГЭС мощностью 950 тыс. кВт, однако в последующем было запланировано сооружение десяти ГЭС общей рабочей мощностью первых очередей 535 тыс. кВт.

Хотя уже за год до этого в 1919 году Совет труда и обороны признал строительства Волховской и Свирской гидростанций объектами, имеющими оборонное значение. В том же году началась подготовка к возведению Волховской ГЭС, первой из гидроэлектростанций возведенных по плану ГОЭЛРО.

Однако и до начала строительства Волховской ГЭС Россия имела достаточно богатый опыт промышленного гидростроительства, в основном, частными компаниями и концессиями . Информация об этих ГЭС, построенных в России за последнее десятилетие 19-го века и первые 20 лет двадцатого столетия достаточно разрознена, противоречива и требует специальных исторических исследований.

Наиболее достоверным считается, что первой гидроэлектростанцией в России была Березовская (Зыряновская) ГЭС, построенная в Рудном Алтае на реке Березовка (приток р. Бухтармы) в 1892 году. Она была четырехтурбинная общей мощностью 200 кВт и предназначалась для обеспечения электричеством шахтного водоотлива из Зыряновского рудника.

На роль первой также претендует Ныгринская ГЭС, которая появилась в Иркутской губернии на реке Ныгри (приток р. Вачи) в 1896 году. Энергетическое оборудование станции состояло из двух турбин с общим горизонтальным валом, вращавшим три динамо-машины мощностью по 100 кВт. Первичное напряжение преобразовывалось четырьмя трансформаторами трехфазного тока до 10 кВ и передавалось по двум высоковольтным линиям на соседние прииски. Это были первые в России высоковольтные ЛЭП. Одну линию (длиной 9 км) проложили через гольцы к прииску Негаданному, другую (14 км) - вверх по долине Ныгри до устья ключа Сухой Лог, где в те годы действовал прииск Ивановский. На приисках напряжение трансформировалось до 220 В. Благодаря электроэнергии Ныгринской ГЭС в шахтах установили электрические подъемники. Кроме того, электрифицировали приисковую железную дорогу, служившую для вывоза отработанной породы, которая стала первой в России электрифицированной железной дорогой.

Преимущества

  • использование возобновляемой энергии.
  • очень дешевая электроэнергия.
  • работа не сопровождается вредными выбросами в атмосферу.
  • быстрый (относительно ТЭЦ/ТЭС) выход на режим выдачи рабочей мощности после включения станции.

Недостатки

  • затопление пахотных земель
  • строительство ведется только там, где есть большие запасы энергии воды
  • на горных реках опасны из-за высокой сейсмичности районов
  • сокращенные и нерегулируемые попуски воды из водохранилищ по 10-15 дней (вплоть до их отсутствия), приводят к перестройке уникальных пойменных экосистем по всему руслу рек, как следствие, загрязнение рек, сокращение трофических цепей, снижение численности рыб, элиминация беспозвоночных водных животных, повышение агрессивности компонентов гнуса (мошки) из-за недоедания на личиночных стадиях, исчезновение мест гнездования многих видов перелетных птиц, недостаточное увлажнение пойменной почвы, негативные растительные сукцессии (обеднение фитомассы), сокращение потока биогенных веществ в океаны.

Крупнейшие аварии и происшествия

Примечания

См. также

Ссылки

  • Карта крупнейших ГЭС России (GIF, данные 2003 года)

Гидроэлектростанция представляет собой комплекс различных сооружений и оборудования, использование которых позволяет преобразовывать энергию воды в электроэнергию . Гидротехнические сооружения обеспечивают необходимую концентрацию потока воды, а дальнейшие процессы производятся при помощи соответствующего оборудования.

Гидроэлектростанции возводятся на реках , сооружая плотины и водохранилища. Большое значение для эффективности работы станции имеет выбор места. Необходимо наличие двух факторов: гарантированная обеспеченность водой в течение всего года и как можно больший уклон реки. Гидроэлектростанции разделяются на плотинные (необходимый уровень реки обеспечивается за счёт строительства плотины) и деривационные (производится отвод воды из речного русла к месту с большой разностью уровней).

Отличаться может и расположение сооружений станции. Например, здание станции может входить в состав водонапорных сооружений (так называемые русловые станции) или располагаться за плотиной (приплотинные станции).

Красноярская ГЭС

  • ГЭС (Плотина Гувера в Неваде)

Технологии

Работа гидроэлектростанций основана на использовании кинетической энергии падающей воды. Для преобразования этой энергии применяются турбина и генератор . Сначала эти устройства вырабатывают механическую энергию, а затем уже электроэнергию. Турбины и генераторы могут устанавливаться непосредственно в дамбе или возле неё. В некоторых случаях используется трубопровод , посредством которого вода , находящаяся под давлением , подводится ниже уровня дамбы или к водозаборному узлу ГЭС .

Необходимый напор воды образуется посредством строительства плотины , и как следствие концентрации реки в определенном месте, или деривацией - естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию.

Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

  • мощные - вырабатывают от 25 МВТ и выше;
  • средние - до 25 МВт;
  • малые гидроэлектростанции - до 5 МВт.

Как же такое устройство обеспечивает преобразование энергии воды в электроэнергию? В камере происходит взрыв определенного количества вещества. Взрывная волна жидкости проходит по стволу и попадает в цилиндр. Вследствие этого происходит вращение лопастей турбины, что, в свою очередь, является причиной работы гидрогенератора.

По мнению разработчиков проекта, самым важным условием для обеспечения эффективности изобретения является правильный расчёт веса взрывной волны, необходимого для производства волны, а не всплеска. Кроме того, должна быть точно рассчитана периодичность взрывов, что позволит избежать перерывов в действии устройства и не снижать скорость вращения лопастей. На стадии разработки находятся и другие варианты подобных установок.

Гидроаккумулирующие электростанции

Знак у Киевской ГАЭС

В период малых нагрузок гидроагрегаты станции заняты перекачкой воды из низового водоёма в верховой. Во время повышенной нагрузки происходит использование запасённой воды для выработки пиковой энергии. Обратимые гидроагрегаты обеспечивают работу турбинных и насосных режимов и представляют собой соединение синхронной электрической машины и гидравлической насос-турбины.

Энергия, которая тратится на перекачку, вырабатывается ТЭС во время пониженной загрузки, когда её стоимость не слишком высока. То есть, дешёвая ночная электроэнергия преобразовывается в дорогую. Экономическая эффективность, как можно убедиться, довольно высока. Несомненным преимуществом данного типа гидростанций является наличие высокого напора. Это позволяет устанавливать более эффективные аккумуляторы . Встречаются и станции смешанного типа. Часть установленных там гидроагрегатов способна работать в двух режимах: турбинном и насосном. Другая часть работает только в турбинном режиме. Использование таких станций позволяет накапливать большее количество воды и вследствие этого производить больше электроэнергии в периоды повышенной нагрузки.

Приливные электростанции

Приливная электростанция

Для создания экономичной приливной станции необходимы определённые природные условия. В частности, должен быть большой перепад уровней во время отлива и прилива (не менее шести метров), особенности береговой линии, которые позволяют создать плотину и водный бассейн соответствующих размеров.

На нашей планете такие места найти не так уж и просто. Это побережье американского штата Мэн, канадская провинция Нью-Брансуик, Персидский залив, отдельные регионы Аргентины, южная Англия, северная Франция, северные области европейской части России. Впрочем, даже станции, сооруженные в указанных регионах, не смогли бы достойно конкурировать с уже действующими ТЭС по стоимости производимой энергии .

Проекты приливных электростанций обычно предусматривают наличие двух бассейнов. Это верховой и низовой водоёмы. Каждый из них должен быть дополнен водопропускными отверстиями и затворами. Во время прилива верховой бассейн заполняется водой, а затем отдаёт всю воду низовому, который опорожняется при отливе.

История гидроэнергетики

Человек всегда жил возле водоёмов и не мог не обращать внимание на огромный потенциал воды как источника энергии. Поэтому история гидроэнергетики ведёт своё начало ещё с древних времён. Уже тогда люди научились с помощью воды производить помол зерна или дутьё воздуха при выплавке металла.

Постепенно механизмы совершенствовались, и водяные колёса становились всё более эффективными. В конце девятнадцатого века наступил современный этап в развитии гидроэнергетики. Но полномасштабное использование водных ресурсов началось только в двадцатом столетии, а точнее – в тридцатых годах, когда вода начала использоваться человеком для получения электричества. Именно в это время в мире начинается строительство крупных гидроэлектростанций.

Гидроэнергетика прошла довольно долгий и интересный путь развития и продолжает развиваться, одаривая человека всё новыми возможностями. В данном разделе мы шаг за шагом пройдём путь, проделанный гидроэнергетикой в течение многих веков, рассмотрим этапы и особенности её развития, от водяных колёс, используемых в эпоху античности и Средневековья, до современных гидроэлектростанций, появившихся уже в двадцатом веке.

Античная и средневековая гидроэнергетика

Водяная мельница

Трудно сказать, когда человек начал использовать водные ресурсы для получения энергии. Самые ранние упоминания о подобных процессах относятся к четвёртому веку до нашей эры. При этом учёные склонны полагать, что использование воды происходило параллельно во многих регионах планеты. Кстати, археологи обнаружили свидетельства того, что водные ресурсы эксплуатировали и на территории бывшего Советского Союза: на территории современной Армении и в бассейне реки Амударья.

Древние греки использовали водяное колесо для облегчения некоторых видов тяжёлого ручного труда. Например, это приспособление осуществляло перемол зерна. Постепенно технологии совершенствовались, количество водяных колёс в европейских государствах неуклонно росло. Так, в одиннадцатом веке в Англии и Франции одна мельница приходилась на двести пятьдесят человек. Согласно утверждениям историков, приблизительно в тринадцатом веке водяные мельницы появляются в средневековой Руси, а точнее – в её юго-западных и северо-восточных регионах.

С течением времени увеличивались и сферы применения устройств. Водяные мельницы обеспечивали работу сукновальных фабрик и откачивающих насосов, участвовали в распилке леса, помогали человеку варить пиво, применялись на маслобойнях. До восемнадцатого столетия применялись исключительно колёса нижнего боя. Позже появились среднебойные и нижнебойные водяные колёса.

Гидроэнергетика в девятнадцатом столетии

Водяная турбина

Достижения предыдущих столетий уже не могли удовлетворять потребности человека в девятнадцатом веке. Толчок дальнейшему развитию гидроэнергетики дало изобретение водяных турбин . Хотя попытки создания более совершенного по сравнению с водяным колесом механизма предпринимались и до этого. Так, ещё в шестнадцатом веке на Урале использовали быстроходное мутовчатое колесо с вертикальным расположением вала. В таких механизмах вода попадала на изогнутые лопасти колеса из специального желоба.

Впоследствии аналогичным образом были устроены свободноструйные водяные гидротурбины . Но полноценная водяная турбина была создана только в начале девятнадцатого века. Её создание – заслуга нескольких талантливых изобретателей. Одним из них русский исследователь И. Сафонов, который в 1837 году произвёл установку сконструированной им водяной турбине на реке Нейве. Два года спустя Сафонов усовершенствовал собственное изобретение, установив несколько переделанную турбину на одном из местных заводов. Параллельно с Сафоновым над созданием водяных турбин работал французский учёный Фурнейрон. Изобретённое им устройство было представлено в 1834 году. Изобретения, сделанные обоими учёными, быстро завоевали популярность, и в течение последующих пятидесяти лет появляется множество самых разнообразных турбин.

Уже в конце девятнадцатого века происходит событие, которое фактически откроет современный этап в истории мировой гидроэнергетики. В 1891 году русский инженер М.О. Доливо-Добровольский, проживающий в Германии и покинувший Россию по причине своей политической неблагонадёжности, прибыл в город Франкфурт-на-Майне для участия в электротехнической выставке. Там он должен был продемонстрировать свой изобретение – двигатель переменного тока . Тогда подобный аттракцион вообще был в новинку, но автор решил дополнить его ещё одним сооружением.

Это была гидроэлектростанция. В небольшом городке Лауффен Доливо-Добровольский установил генератор трёхфазного тока, который вращала водяная турбина небольших размеров. Вырабатываемая электроэнергия поступала на территорию выставки посредством линии передачи. Её длина равнялась 175 километрам. Сегодня никого не удивляют линии протяжённостью в несколько тысяч километров, но в те времена всё это было бесспорной сенсацией. Эпоха гидроэлектростанций началась.

Гидроэлектроэнергетика в двадцатом веке

ГЭС Гувера США

Несмотря на открытие Доливо-Добровольского, дальнейшее развитие гидроэнергетики было замедлено некоторыми объективными факторами. Строительство крупных гидроэлектростанций, которые были бы действительно эффективными, оказалось предприятием более сложным, чем экспериментальная установка, показанная на выставке. Ведь чтобы заставить вращаться большие турбины, необходим значительный запас воды.

В начале двадцатого века такое строительство представлялось довольно сложным. За первые два десятилетия нового века было построено всего лишь несколько гидроэлектростанций. Но это было только начало. Уже в тридцатых годах были сооружены крупные станции, например, ГЭС Гувер в США мощностью в 1,3 Гиговатт.

Другим ярким событием в истории американской гидроэнергетики стало открытие гидроэлектростанции Адамс, расположенной на Ниагарском водопаде. Её мощность достигала 37 МВт. Запуск таких мощных гидроэлектростанций обусловил увеличение объёмов потребляемой энергии в промышленно развитых странах, что, в свою очередь, дало толчок программам освоения гидроэнергетических потенциалов.

Усть-Каменогорская ГЭС

К началу двадцатого века развитие российской гидроэнергетики было весьма замедленным. Так, в 1913 году на территории Российской империи функционировало около пятидесяти тысяч гидросиловых установок. Их общая мощность составляла около миллиона лошадиных сил. При этом около семнадцати тысяч установок были оборудованы гидротурбинами .

Суммарная годовая выработка электроэнергии на всех гидроэлектростанциях не превышала тридцать пять миллионов киловатт в час при установленной мощности около 16 МВт. В то же время во многих европейских странах общая мощность составляла приблизительно 12000 МВт. Ситуация изменилась после Октябрьской революции. Новая власть хорошо понимала важность развития отрасли.

Уже 13 июня 1918 года было принято решение о начале строительства Волховской гидроэлектростанции, которая стала первым проектом советской гидроэнергетики, а её мощность равнялась 58 МВт. Уже в первые годы советской власти был разработан план электрификации страны (ГОЭЛРО), который был утверждён 22 декабря 1920 года. Одна из глав плана называлась «Электрификация и водная энергия». В ней отмечалось, что использование гидроэлектростанций может представлять выгоду в случае комплексного использования.

План предусматривал сооружение ГЭС общей мощностью в 21254 тысяч лошадиных сил. При этом в европейской части России общая мощность станций составит 7394, в Туркестане – 3020, в Сибири – 10840 тысяч лошадиных сил. Предусматривалось строительство десяти гидроэлектростанций, суммарная мощность которых составит 640 МВт.

Первым советской гидроэлектростанцией стала Днепровская гидроэлектростанция имени Ленина в Запорожье. Ещё в 1921 году Ленин подписал решение о начале строительства, а само строительство было начато в 1927 году. Запуск первого агрегата был произведён в 1932 году, а достичь проектной мощности удалось в 1939 году. Она составила 560 МВт. При возведении плотины были затоплены знаменитые пороги Днепра, что сделало реку полностью судоходной.

За несколько десятилетий Советский Союз стал одним из лидеров мировой гидроэнергетики. Например, в начале семидесятых советская гидроэнергетика по установленной мощности уступала только американской. Строительство гидроэлектростанций велось на Волге, Каме, Дону, Днепре, Свири и других крупных реках .

Это позволило превратитить их в водные магистрали Европейской части страны, существенно повысить уровень воды в реках и получить в результате целостную судоходную систему, которая соединяла между собой Каспийское, Чёрное, Азовское, Балтийское и Белое моря. К концу семидесятых годов двадцатого века были сооружены самые большие гидроэлектростанции в мире. Это Саяно-Шушенская и Красноярская, расположенные на реке Енисей, Братская и Усть-Илимская (река Ангара), Нурекская (река Вахш), Волжская.

Мировая гидроэнергетика в 21 веке

В начале двадцать первого века гидроэнергетика обеспечивает до шестидесяти трёх процентов возобновляемой энергии в мире. Это девятнадцать процентов всей мировой электроэнергии. Установленная гидроэнергетическая мощность составляет 715 Гвт.

Такие страны как Норвегия, Исландия и Канада являются лидерами по выработке гидроэнергии на гражданина. Наиболее активно ведет строительство гидроэлектростанций Китай. Для этого государства гидроэнергия является наиболее перспективным источником энергии и, очевидно, он в скором времени станет основным. Кроме того, именно Китай является мировым лидером по количеству малых гидроэлектростанций.

Наиболее крупные ГЭС расположены на территории Китая (Санься на реке Янцзы, Бразилии (Итайпу на реке Парана и Тукуруи на реке Токантин), Венесуэлы (Гури на реке Карони). Развивается гидроэнергетическая отрасль и в России. Сегодня на территории Российской Федерации функционируют сто две гидроэлектростанции.

Суммарная мощность всех работающих российских гидроагрегатов – сорок пять миллионов киловатт (это пятое место в мире). При этом доля гидроэлектростанций в общем объёме получаемой российской энергии составляет двадцать один процент. А это не так уж и много, особенно, учитывая то, что Россия находится на втором месте по экономическому потенциалу гидроресурсов (около 852 миллиардов киловатт в час). Но освоены эти ресурсы лишь на двадцать процентов.

Перспективы гидроэнергетики

Без сомнения, энергообеспечение – одна из наиболее актуальных проблем человечества. Мировые запасы нефти и газа стремительно уменьшаются и недалёк тот день, когда они будут полностью исчерпаны. Это понимают все, и поэтому с каждым годом всё большее число специалистов изучает возможности их равноценной замены. Сегодня существует несколько направлений альтернативной энергетики: использование солнечной энергии и энергии ветра, биоэнергетика, геотермальная энергетика.

Каждое их этих направлений отличается определёнными достоинствами и недостатками. И поэтому необходимо определиться: какой альтернативный источник энергии лучше всего подходит для удовлетворения нужд человечества и в то же время наносит минимальный ущерб природе.

Потенциал мировой гидроэнергетики

Потенциал гидроэнергетики можно определить, суммировав все существующие на планете речные стоки. Расчёты показали, что мировой потенциал равен пятидесяти миллиардам киловатт в год. Но и эта весьма впечатляющая цифра составляет лишь четверть от количества осадков , ежегодно выпадающих во всём мире.

С учётом условий каждого конкретного региона и состояния мировых рек действительный потенциал водных ресурсов составляет от двух до трёх миллиардов киловатт. Эти цифры соответствуют годовой выработке энергии в 10 000 – 20 000 миллиардов киловатт в час (приведены данные ООН).

Чтобы осознать потенциал гидроэнергетики, выраженный этими цифрами, следует сопоставить полученные данные с показателями нефтяных теплоэлектростанций. Чтобы получить такое количество электроэнергии, станциям, работающим на нефти, требовалось бы около сорока миллионов баррелей нефти каждый день.

Вместе с тем, не теряет актуальность вопрос: какую долю этого природного богатства человечество может позволить себе использовать? Для ответа на этот вопрос необходимо представлять возможные последствия работы гидроэлектростанций для окружающей среды.

Основные достоинства и недостатки

Основные преимущества гидроэнергетики очевидны. Разумеется, главным преимуществом гидроресурсов является их возобновляемость: запас воды практически неисчерпаем. При этом гидроресурсы значительно опережают в развитии остальные виды возобновляемых источников энергии и способны обеспечивать энергией большие города и целые регионы.

Кроме того, пользоваться этим источником энергии можно достаточно просто, что подтверждается длительной историей гидроэнергетики. Например, генераторы гидроэлектростанций можно включать или выключать в зависимости от энергопотребления. Себестоимость строительства гидроэлектростанций является довольно низкой.

В то же время достаточно спорным является вопрос о влиянии гидроэнергетики на окружающую среду. С одной стороны, эксплуатация гидроэлектростанций не приводит к загрязнению природы вредными веществами.

Но в то же время образование водохранилищ требует затопления значительных территорий, зачастую плодородных, а это становится причиной негативных изменений в природе. Например, плотины часто перекрывают рыбам путь к нерестилищам, но в то жнее время благодаря этому обстоятельству значительно увеличивается количество рыбы в водохранилищах и развивается рыболовство.

Экологические аспекты использования гидроэнергетики

Вне всяких сомнений, гидроэнергетика в перспективе должна не оказывать негативное воздействие на окружающую среду или свести его к минимуму. При этом необходимо добиться максимального использования гидроресурсов.

Это понимают многие специалисты и поэтому проблема сохранения природной среды при активном гидротехническом строительстве актуальна как никогда. В настоящее время особенно важен точный прогноз возможных последствий строительства гидротехнических объектов. Он должен дать ответ на многие вопросы, касающиеся возможности смягчения и преодоления нежелательных экологических ситуаций, которые могут возникнуть при строительстве. Кроме того, необходима сравнительная оценка экологической эффективности будущих гидроузлов. Правда, до реализации таких планов ещё далеко.

. Вы можете помочь проекту, исправив и дополнив её.

Общий принцип работы гидроэлектростанции известен, наверное, всем. Вода, переходя из верхнего бьефа в нижний, вращает колесо турбины. От турбины приводится в движение генератор, который собственно и производит электричество. Но все самое интересное – в подробностях.

Кстати, для того чтобы получить 1 квт-ч электрической энергии, требуется спуск 14 тонн воды с высоты 27 м.

В отличие, например, от тепловых станций, устроенных совершенно однотипно, каждая гидроэлектростанция устроена со своими особенностями. То есть, не существует некоей однотипной ГЭС. Они отличаются по расходу и напору воды, обьему водохранилища, по географическим критериям местности: климат, грунт, рельеф, близость моря.

Вот машинный за, вполне обычный, разве что окна искусственные (с подсветкой): зал находится на глубине 76 м внутри скалы.

Это машинный зал первой в СССР подземной гидроэлектростанции, к ней с поверхности земли подведены четыре водовода, имеющие диаметр 6 м.

Для извлечения из зала оборудования при необходимости его замены или ремонта в скале вырублена шахта:

Сбросные сооружения и затворы

Не всегда и не вся вода может использоваться для выработки энергии: часть ее сбрасывается мимо ГЭС. Это бывает необходимо при паводке весной (если отсутствует водохранилище многолетнего регулирования), при ремонте агрегатов, при необходимости холостого сброса воды для пропуска мальков рыб по течению и по другим причинам. На Беломорской ГЭС холостой водосброс – это три затвора.

Вопрос резервирования очень важен, ведь если вовремя не понизить в водохранилище уровень воды, это будет иметь серьезные последствия. Для поднятия и опускания затворов предусмотрены козловые краны и электрические лебедки, есть и ручной привод.

Когда затвор поднят, происходит холостой сброс воды для Беломорского водозабора, который расположен ниже по течению.

При обледенении затвора используется индукционный подогрев: обогрев одного затвора требует 150кВт.

Для этой же цели возможно применение барботажа – пропускание воздуха вдоль затвора из глубины, с помощью шлангов системы сжатого воздуха.

Для гашения кинетической энергии воды при сбросе используются различные способы: столкновение потоков, ступени, водобойные колодцы. Например, на Волховской ГЭС – водобойная плита с гасителями.

О рыбе

Нижнетуломская ГЭС для того, чтобы семга могла подняться вверх по течению на нерест, имеет специальный рыбоход, имитирующий горный ручей. В его конструкции предусмотрены и камни на дне, и зигзагообразные проходы, и места для отдыха рыбы.

В период нереста ближайший к рыбоходу гидроагрегат отключают, чтобы его шум не мешал рыбе найти ручей и плыть в правильном направлении.

Безопасность

В результате аварийного прорыва воды ГЭС может остаться без электричества даже для собственных нужд, поэтому предусматриваются резервные источники: аккумуляторы, аварийные дизель-генераторы.

Еще один компонент системы обеспечения безопасности – аэрационные трубы, которые есть к примеру в верхней части водоводных труб Кондопожской ГЭС.

Аэрационные трубы монтируются для защиты водоводов при образовании в них глубокого вакуума, от которого их стальные стенки могут разорваться. Этот вакуум возникает в ситуации резкого опорожнения водовода после закрытия верхних затворов. По аэрационным же трубам они заполняются воздухом, что предотвращает деформацию.

Остатки водовода 1930-х годов из дерева.

Защитная стенка (в центре кадра) предусмотрена для той ситуации, если водовод все-таки прорвется.

Стенка перенаправит водный поток так, что он обойдет станцию с левой стороны, а не через здание администрации и уйдет в нижний бьеф по выемке.

Контроль и управление

На следующем фото видны турбина, генератор и вал, который их соединяет. Слева виднеется схема гидроагрегата, на которую выведены гидроманометры, которые показывают давление в системе смазки.

Внизу – гидравлические приводы направляющего аппарата.

В машинном зале можно проследить за другими параметрами: уровни воды в бьефах, температура воздуха и воды.

Мнемосхема

Данный гидроагрегат не работает. Мощность и частота вращения ротора равны нулю, закрыт направляющий аппарат.

Вода из спиральной камеры турбины снизу забирается и подается на охладители генератора (охладитель – в центре схемы, он красного цвета, охладители А и Б), а также на смазку подпятника, верхнего (ВГП) и нижнего (НГП) генераторных подшипников. Подшипники смазываются водой, нагреваемая вода отправляется на рыбзавод. Справа – красный бак с маслом – относится к гидравлической системе управления направляющим аппаратом. Также здесь можно видеть уровни и расходы и давления всех жидкостей.

Вибрация

Вибрация очень опасна: к примеру, на Саяно-Шушенской станции гидроагрегат был разрушен именно из-за нее. Точнее, из-за усталостного разрушения шпилек крепления крышки турбины по причине вибраций, которые возникли при переходе гидроагрегата через диапазон «запрещенной зоны».

На центральном пульте управления ГЭС можно увидеть, где эта «запрещенная зона» расположена.

Гидроагрегаты Г1, Г3, Г4 работают. Г2 – остановлен. На черном фоне отображается мощность, вырабатываемая генераторами 38,1/38/38 МВт соответственно. Красные столбики Г3 и Г4 свидетельствуют о работе на полную мощность, в Г1 еще имеется резерв. Красная зона за столбиками – диапазон мощности, при которой нежелательна работа гидроагрегата, при пуске и остановке ее необходимо быстро миновать.

Узнать, какой гидроагрегат не работает можно еще до входа в здание.

Когда противовесы подняты – значит, затворы на соответствующих турбинных водоводах опущены. Активно внедряется удаленное управление. При этом диспетчер должен держать под контролем и учитывать взаимное влияние ГЭС в каскаде, значения уровней воды в водохранилищах, потребности потребителей по электричеству и воде. На основании этих сведений происходит распределение выработки электроэнергии между станциями.

Практически каждый представляет себе предназначение гидроэлектростанций, однако лишь немногие достоверно понимают принцип работы ГЭС. Основная загадка для людей - каким образом вся эта огромная плотина без какого-либо топлива генерирует электрическую энергию. Об этом и поговорим.

Что такое ГЭС?

Гидроэлектростанция - это сложный комплекс, состоящий из разных сооружений и специального оборудования. Возводятся гидроэлектростанции на реках, где есть постоянный приток воды для наполнения плотины и водохранилища. Подобные сооружения (плотины), создаваемые при постройке гидроэлектростанции, необходимы для концентрации постоянного потока воды, который при помощи специального оборудования для ГЭС преобразовывается в электрическую энергию.

Отметим, что важную роль в плане эффективности работы ГЭС играет выбор места для строительства. Необходимо наличие двух условий: гарантированная неиссякаемая обеспеченность водой и высокий угол

Принцип работы ГЭС

Работа гидроэлектростанции достаточно проста. Возведенные гидротехнические сооружения обеспечивают стабильный напор воды, который поступает на лопасти турбины. Напор приводит турбину в движение, в результате чего она вращает генераторы. Последние и вырабатывают электроэнергию, которую затем по линиям высоковольтных передач доставляют потребителю.

Основная сложность подобного сооружения - обеспечение постоянного напора воды, что достигается путем возведения плотины. Благодаря ей большой объем воды концентрируется в одном месте. В некоторых случаях используют естественный ток воды, а иногда плотину и деривацию (естественное течение) применяют совместно.

В самом здании находится оборудование для ГЭС, основная задача которого заключается в преобразование механической энергии движения воды в электрическую. Эта задача возложена на генератор. Также используется и дополнительное оборудование для контроля работы станции, распределяющие устройства и трансформаторные станции.

Ниже на картинке показана принципиальная схема ГЭС.

Как видите, поток воды вращает турбину генератора, тот вырабатывает энергию, подает ее на трансформатор для преобразования, после чего она транспортируется по ЛЭП к поставщику.

Мощности

Есть разные гидроэлектростанции, которые можно поделить по вырабатываемой мощности:

  1. Очень мощные - с выработкой более 25 МВт.
  2. Средние - с выработкой до 25 МВт.
  3. Малые - с выработкой до 5 МВт.

Технологии

Как мы уже знаем, принцип работы ГЭС основан на использовании механический энергии падающей воды, которая в дальнейшем с помощью турбины и генератора преобразуется в электрическую. Сами турбины могут быть установлены либо в дамбе, либо возле нее. В некоторых случаях применяют трубопровод, через который вода, находящаяся ниже уровня дамбы, проходит под высоким давлением.

Индикаторов мощности любой ГЭС несколько: расход воды и гидростатический напор. Последний показатель определяется разницей высот между начальной и конечной точкой свободного падения воды. При создании проекта станции на одном из этих показателей основывают всю конструкцию.

Известные сегодня технологии производства электричества позволяют получать высокий КПД при преобразовании механической энергии в электрическую. Иногда он в несколько раз превышает аналогичные показатели тепловых электростанций. Столь высокая эффективность достигается за счет применяемого на гидроэлектростанции оборудования. Оно надежное и относительно простое в использовании. К тому же за счет отсутствия топлива и выделения большого количества тепловой энергии срок службы подобного оборудования достаточно большой. Поломки здесь случаются крайне редко. Считается, что минимальный срок службы генераторных установок и вообще сооружений - около 50 лет. Хотя на самом деле даже сегодня вполне успешно функционируют гидроэлектростанции, которые были построены в тридцатых годах прошлого века.

Гидроэлектростанции России

На сегодняшний день на территории России действует около 100 гидроэлектростанций. Конечно, их мощность разная, и большая часть - это станции с установленной мощностью до 10 МВт. Есть также такие станции, как Пироговская или Акуловская, которые были введены в эксплуатацию еще в 1937 году, а их мощность составляет всего 0.28 МВт.

Самыми крупными являются Саяно-Шушенская и Красноярская ГЭС с мощностью 6400 и 6000 МВт соответственно. За ними следуют станции:

  1. Братская (4500 МВт).
  2. Усть-Илимская ГЭС (3840).
  3. Бочуганская (2997 МВт).
  4. Волжская (2660 МВт).
  5. Жигулевская (2450 МВт).

Несмотря на огромное количество подобных станций, они вырабатывают всего 47700 МВт, что равно 20% от суммарного объема всей производимой энергии в России.

В заключение

Теперь вы понимаете принцип работы ГЭС, преобразовывающих механическую воды в электрическую. Несмотря на достаточно простую идею получения энергии, комплекс оборудования и новые технологии делают подобные сооружения сложными. Впрочем, по сравнению с они действительно являются примитивными.