Комплектующие        16.03.2019   

Характеристика элеватора системы теплоснабжения. Элеваторный узел системы отопления: схема. Принцип работы централизованного отопления

Отопительная система является одной из самых важных для жизнеобеспечения любого здания, особенно если речь идёт о жилых помещениях. В частных домах всё чаще встречаются системы автономного типа , а вот в многоквартирных домах ещё не ушли от центрального отопления .

Именно в подвалах многоэтажных домов возможно увидеть элеваторный узел отопления и, собственно, понять специфику его работы и то, какие возможности даёт его использование.

1.1 Принцип и схема работы узла

Теплоноситель подаётся к дому по трубам. Трубопровода всего два:

  1. Подающий. Его основная функция подавать горячую воду в дом.
  2. Обратный. Он, в свою очередь, отводит остывший, отдавший своё тепло, теплоноситель обратно в котельную.

Когда вода (теплоноситель) подходит в подвал здания, её ожидает три пути в зависимости от того, какой температуры она будет. В нашей стране существуют три основных тепловых режима:

  • до 95 °С;
  • до 130 °С;
  • до 150 °С.

Когда вода нагрета до 95 °С, то в данном случает она сразу распределяется по системе отопления . Если же она превышает эту отметку, её необходимо охладить (этого требуют санитарные нормы). И в данном случае в дело «вступает» элеваторный узел отопления.

Охлаждение происходит за счёт смешивания в элеваторе горячей воды из подающей трубы и остывшей из обратной. Таким образом, элеваторный узел работает сразу как два устройства:

  1. Как смеситель.
  2. В качестве циркуляционного насоса.

Перегретая вода попадает в сопло элеватора, в то время, как в зону разряжения попадает вода из обратного трубопровода. Затем эти два потока оказываются в смешивающей камере, где, исходя из названия, происходит смешивание. И вот уже смешанная вода попадает к потребителю.

Помимо того, что использовать такое устройство значит применить наиболее простой и экономный способ охладить теплоноситель, при этом элеватор может ещё и повысить общую эффективность всей системы.

Кроме всего прочего, именно за счёт элеваторного узла мы имеем возможность экономить. Забирая из тепловой сети определённое небольшое количество воды, разбавляем её водой из обратного трубопровода, за тепло которой уже заплатили, и производим повторную «отправку» в квартиры.

1.2 Составляющие элеваторного узла системы отопления

Устройство имеет достаточно несложную конструкцию. Выделяют три основные составляющие устройства:

  • сопло;
  • струйный элеватор;
  • камера разряжения.

Также существует такое понятие как «обвязка». Это специальная запорная арматура , контрольные термометры и манометры. Именно эти компоненты и составляют элеваторный узел отопления.

С функциональной точки зрения элеватор является смешивающим устройством, в который вода поступает, проходя через ряд фильтров. Эти фильтры находятся сразу после задвижки (входной) и очищают теплоноситель (воду) от грязи. По этой причине их часто называют грязевиками. Сама оболочка элеватора стальная.

2 Достоинства и недостатки подобного узла

Элеватор как и любая другая система имеет определённые сильные и слабые стороны.

Большое распространение такого элемента тепловой системы приобрело благодаря целому ряду достоинств, среди них:

  • простота схемы устройства;
  • минимальное обслуживание системы;
  • долговечность устройства;
  • доступная цена;
  • независимость от электрического тока;
  • коэффициент смешения не зависит от гидро-теплового режима внешней среды;
  • наличие дополнительной функции: узел может выполнить роль циркуляционного насоса .

Недостатками данной технологии являются:

  • отсутствие возможности проведения регулировки температуры теплоносителя на выходе;
  • достаточно трудоёмкая процедура расчёта диаметра насадки-конуса, а также размеров камеры смешения.

У элеватора есть также небольшой нюанс, который касается установки – перепад давления между подающей линией и обратной должен находится в пределах 0,8-2 атм.

2.1 Схема подключения элеваторного узла к отопительной системе

Системы отопления и горячего водоснабжения (ГВС) являются в некоторой степени взаимосвязанными. Как говорилось выше, для отопительной системы необходима температура воды до 95°С, а в ГВС –на уровне 60-65 °С. Поэтому здесь также требуется использование элеваторного узла.

Принцип работы теплового элеваторного узла и водоструйного элеватора. В предыдущей статье мы с вами выяснили основное и особенности эксплуатации, водоструйных или как их еще называют инжекционных элеваторов. Вкратце — основное назначение элеватора понижение температуры воды и одновременно увеличение объема прокачиваемой воды во внутренней системе отопления жилого дома.


Теперь разберем, как же все-таки работает водоструйный элеватор и за счет чего он увеличивает прокачку теплоносителя через батареи в квартире.

Теплоноситель поступает в дом с температурой соответствующей температурному графику работы котельной. Температурный график это соотношение между температурой на улице и температурой, которую котельная или ТЭЦ должны подать в теплосеть, и соответственно с небольшими потерями к вашему тепловому пункту (вода, двигаясь по трубам на большие расстояния, немного остывает). Чем холоднее на улице, тем большую температуру выдает котельная.

Например, при температурном графике 130/70:

  • при +8 градусах на улице в подающем трубопроводе отопления должно быть 42 градуса;
  • при 0 градусов 76 градусов;
  • при -22 градуса 115 градусов;

Если кого-то интересуют более подробные цифры, можете скачать температурные графики для различных систем отопления .

Но вернемся к принципу и схеме работы нашего теплового элеваторного узла.

Пройдя входные задвижки, грязевики или сетчато-магнитные фильтра, вода поступает непосредственно в смешивающее элеваторное устройство — элеватор , который состоит из стального корпуса, внутри которого находится смешивающая камера и сужающее устройство (сопло).

Перегретая вода выходит из сопла в с большой скоростью. В результате в камере за струей создается разрежение за счет чего и происходит подсасывание или инжекция воды из обратного трубопровода. За счет изменения диаметра отверстия в сопле можно в определенных пределах регулировать расход воды и соответственно температуру воды на выходе из элеватора.

Элеватор теплового узла работает одновременно как циркуляционный насос и как смеситель. При этом он не потребляет электрическую энергию , а использует перепад давления перед элеватором или как еще принято говорить располагаемый напор в тепловой сети.

Для эффективно работы элеватора необходимо, что бы располагаемый напор в теплосети соотносился к сопротивлению системы отопления не хуже чем 7 к 1 .
Если сопротивление системы отопления стандартной пятиэтажки 1м или это 0,1 кгс/см2 то для нормальной работы элеваторного узла необходим располагаемый напор в системе отопления до ИТП не менее 7 м или 0,7 кгс/см2.

Для примера если в подающем трубопроводе 5 кгс/см2 то в обратном не более 4,3 кгс/см2.

Обратите внимание на то, что на выходе элеватора давление в подающем трубопроводе не намного больше давления в обратном трубопроводе и это нормально, 0,1 кгс/см2 по манометрам заметить довольно сложно, качество современных манометров к сожалению на очень низком уровне, но это уже тема для отдельной статьи. А вот если у вас разница давлений после элеватора больше 0,3 кгс/см2 следует насторожиться, или у вас система отопления сильно забита грязью, или при капитальном ремонте вам очень сильно занизили диаметры разводящих труб.

Выше сказанное не относится к схемам с на батареях и стояках, с ними работают только схемы смешения с применением регулирующих клапанов и смесительных насосов.
Кстати и применение данных регуляторов тоже в большинстве случаев весьма спорно, поскольку на большинстве отечественных котельных применяется именно качественное регулирование по температурному графику . Вообще массовое внедрение автоматических регуляторов фирмы «Danfoss» стало возможным только благодаря хорошей маркетинговой компании. Ведь «перетоп» у нас явление очень редкое, обычно мы все тепло недополучаем.

Элеватор с регулируемым соплом.

Теперь нам осталось разобрать, как проще регулировать температуру на выходе элеватора , и возможно ли с помощью элеватора экономить тепло.

Экономить тепло с помощью водоструйного элеватора возможно, например, понижая температуру в помещениях в ночное время , или днем, когда большинство из нас на работе. Хотя этот вопрос тоже спорный, мы снизили температуру, здание остыло, следовательно, чтобы его заново прогреть расход тепло против нормы надо увеличить.
Выигрыш только в одном, при прохладной температуре 18-19 градусов спится лучше , наш организм чувствует себя комфортнее.

Для целей экономия тепла применяется специальный водоструйный элеватор с регулируемым соплом . Конструктивно его исполнение и главное глубина качественной регулировки может быть различной. Обычно коэффициент смешения водоструйного элеватора с регулируемым соплом меняется в диапазоне от 2 до 5. Как показала практика, таких пределов регулировки вполне достаточно на все случаи жизни. «Danfoss» предлагает с диапазоном регулирования до 1 к 1000. Для чего это нам в системе отопления совершенно непонятно. А вот соотношение цены в пользу водоструйного элеватора с регулируемым соплом относительно регуляторов «Danfoss» примерно 1 к 3. Правда надо отдать должное «Данфосовцам» их продукция надежнее, хотя и не вся, плохо работают на нашей воде некоторые разновидности недорогих трехходовых клапанов. Рекомендация – экономить нужно с умом!

Принципиально все регулирующие элеваторы выполнены одинаково. Их устройство хорошо видно на рисунке . , можете посмотреть анимированное изображение работы регулирующего механизма ВАРС водоструйного элеватора.

И на последок краткий комментарий — применение водоструйных элеваторов с регулируемым соплом особенно эффективно в общественных и производственных зданиях где позволяет экономить до 20-25% расходов на отопление, понижая температуру в отапливаемых помещениях в ночное время и, особенно, в выходные дни.

Здраствуйте, уважаемые читатели! Элеватор отопления — это по сути, водоструйный насос, действие которого основано на подмешивании воды из обратки в подачу отопления. Подавляющее количество жилых домов в советское время строилось именно с элеваторными теплоузлами. Тогда, в то время, это было обоснованно и правильно. Элеваторный узел дешев, прост, в то же время при нормальной работе обеспечивает необходимую комфортную температуру в квартирах, и даже с избытком. В советское время учет тепла в жилых домах практически не велся. Приборы учета тепла были только на теплоисточниках (ТЭЦ, котельных), ну может быть кое где в ЦТП (центральных тепловых пунктах). О домовом, а уж тем более поквартирном учете тепла тогда никто и не думал. Сейчас, конечно, уже совсем другая ситуация. Переплачивать за тепло никто не хочет.

Кое где, конечно, элеваторные схемы заменены на более современные схемы с двух, трехходовыми клапанами регулирования расхода. Но в подавляющем количестве жилых домов и зданий применяется именно элеваторная схема отопления с подмесом. Вот почему так важно знать и уметь рассчитывать элеваторный узел, для того чтобы он функционировал в нормальном режиме, а не в режиме недогрева или перегрева.

Мое личное отношение к элеваторным узлам таково — конечно, их нужно менять на более современные схемы. Как минимум, на схемы с электронными погодозависимыми элеваторами с регулируемым соплом.

Они довольно быстро окупают себя за счет того, что на них можно выставлять ночное понижение температуры и за счет устранения перегрева в осенне — весенний период. Или, что еще лучше, на схемы с циркуляционным насосом и регулируемым клапаном (лучше двухходовым). Схемы такие в европейских странах применяют уже давно.

Но у нас в стране элеватор, я думаю, еще долго будет «рулить». Какие же параметры важны для нормальной работы элеватора и соответственно должны быть правильно просчитаны? Это прежде всего коэффициент смешения u. Коэффициент смешения u показывает отношение расхода через подмес элеватора из обратки G2 к расходу воды, поступающей из теплосети к элеватору Gт.с., u = G2/Gт.с. То есть цифра нужная.

u = (t1-t3)/(t3-t2) ; где

t1 — температура воды в подаче, °С.

t2 — температура воды в обратке,°С .

t3 — температура воды после элеватора,°С .

При расчете элеватора нам необходимо просчитать такие параметры, как минимально необходимый напор перед элеватором и диаметр горловины элеватора. Минимально необходимый напор перед элеватором рассчитывается по формуле: H = 1,4*h*(1+u)² ; где

h — потери напора, или по другому сопротивление системы. Эта цифра должна быть у вас в проектной документации на здание. Если нет, значит надо просчитывать гидравлику, что довольно затруднительно. Но вообще сопротивление системы обычно составляет от 0,8 до 1,5 м. Если больше двух, то элеватор скорее всего, нормально работать не будет.

u — коэффициент смешения элеватора.

Диаметр горловины рассчитывается по формуле:

u — коэффициент смешения.

Н — потери напора, или другими словами сопротивление системы, м.

Для нормальной работы элеватора, а особенно механического, просто необходимо знать диаметр сопла элеватора. Считается диаметр по формуле:

где: G — расход сетевой воды, т/ч.

Н1 — напор перед элеватором,м. Если все делать правильно, то он определяется по пьезометрическому графику. Но мы в такие дебри лезть не будем, напор берем фактический, который у вас в теплоузле (напор — это перепад давлений между подачей и обраткой) , либо который можно выставить.

Просчитав все эти цифры, можно приступать к выбору элеватора.

Выбирается по диаметру горловины. При выборе элеватора следует выбирать стандартный элеватор с ближайшим меньшим диаметром горловины. Элеваторы подразделяются по номерам от 1 до 7. Соответственно, чем больше номер, тем больше диаметра горловины. Лучше всего, на мой взгляд, расчет элеватора расписан в СП 41-101-95 «Проектирование тепловых пунктов». Ссылка ниже по тексту:

Весь этот расчет я полностью автоматизировал и расписал в программе в формате Exel, и вы можете приобрести ее за 100 рублей, для этого вам нужно написать мне по эл.почте, и я вышлю вам программу по эл.почте. Нужно только подставить свои исходные данные.

Что еще хотелось бы сказать по поводу элеваторной схемы отопления. Централизованное теплоснабжение еще долго будет лидировать, соответственно и изобретение нашего отечественного инженера В.М.Чаплина — элеватор еще долго будет в работе.

Я не сторонник такой схемы подключения, хотя и можно сказать, что электронные элеваторы с регулируемым соплом работают неплохо и даже довольно быстро окупаются.Но все же более перспективными представляются схемы с насосным подключением с двух и трехходовыми клапанами. То есть циркуляционный насос для поддержания циркуляции и регулирования режимов работы, и клапан для регулировки давления и расхода воды.

Совсем недавно я написал и выпустил книгу «Устройство ИТП (тепловых пунктов) зданий». В ней на конкретных примерах я рассмотрел различные схемы ИТП, а именно схему ИТП без элеватора, схему теплового пункта с элеватором, и наконец, схему теплоузла с циркуляционным насосом и регулируемым клапаном. Книга основана на моем практическом опыте, я старался писать ее максимально понятно, доступно.

Вот содержание книги:

1. Введение

2. Устройство ИТП, схема без элеватора

3. Устройство ИТП, элеваторная схема

4. Устройство ИТП, схема с циркуляционным насосом и регулируемым клапаном.

5. Заключение

Устройство ИТП (тепловых пунктов) зданий.

Многоэтажные здания, высотки, административные здания и множество различных потребителей обеспечивают теплом ТЭЦ или мощные котельные. Даже относительно простую автономную систему частного дома иногда трудно отрегулировать, особенно если допущены ошибки при проектировании или монтаже. А ведь система отопления большой котельной или ТЭЦ несравненно сложнее. От магистральной трубы отходит множество ответвлений, причем у каждого потребителя различное давление в трубах отопления и количество потребляемого тепла.

Протяженность трубопроводов разная, и система должна быть спроектирована так, чтобы самый отдаленный потребитель получал достаточное количество тепла. Становится понятным, зачем в системе отопления давление теплоносителя. Давление продвигает воду по контуру отопления, т.е. создаваемое центральной магистралью отопления оно играет роль циркуляционного насоса. Отопительная система должна не допускать разбалансировки при изменении потребления тепла каким-либо потребителем.

Кроме того на эффективность теплоснабжения не должна влиять разветвленность системы. Чтобы сложная централизованная отопительная система работала стабильно, на каждом объекте необходимо установить либо элеваторный узел, либо автоматизированный узел управления системой отопления, чтобы исключить взаимное влияние между ними.

Теплотехники рекомендуют применять один из трех температурных режимов работы котелен. Эти режимы вначале были рассчитаны теоретически и прошли многолетнее практическое применение. Они обеспечивают передачу тепла с минимальными потерями на значительные расстояния с максимальной эффективностью.

Тепловые режимы котелен можно обозначить как соотношение температуры подачи к температуре «обратки»:

В реальных условиях режим выбирается для каждого конкретного региона, исходя из величины зимней температуры воздуха. Следует отметить, что применять для отопления помещений высокие температуры, особенно 150 и 130 градусов нельзя, чтобы избежать ожогов и серьезных последствий при разгерметизации.

Температура воды превышает точку кипения, и она не кипит в трубопроводах благодаря высокому давлению. Значит нужно снизить температуру и давление и обеспечить необходимый отбор тепла для конкретного здания. Эта задача возложена на элеваторный узел системы отопления – специальное теплотехническое оборудование, расположенное в тепловом распределительном пункте.

Устройство и принцип работы элеватора отопления

В точке входа трубопровода тепловых сетей, обычно в подвале, в глаза бросается узел, который соединяет трубы подачи и «обратки». Это элеватор — смесительный узел для отопления дома. Изготовляется элеватор в виде чугунной или стальной конструкции снабженной тремя фланцами. Это обычный элеватор отопления принцип работы его основан на законах физики. Внутри элеватора находится сопло, приемная камера, смесительная горловина и диффузор. Приемная камера соединяется с «обраткой» с помощью фланца.

Перегретая вода поступает на вход элеватора и проходит в сопло. Вследствие сужения сопла скорость потока увеличивается, а давление уменьшается (закон Бернулли). В область пониженного давления подсасывается вода из «обратки» и смешивается в смесительной камере элеватора. Вода уменьшает температуру до нужного уровня и одновременно уменьшается давление. Элеватор работает одновременно как и смеситель. Таков вкратце принцип работы элеватора в системе отопления здания или сооружения.

Схема теплового узла

Регулировку подачи теплоносителя осуществляют узлы элеваторные отопления дома. Элеватор – основной элемент теплового узла, нуждается в обвязке. Регулировочное оборудование чувствительно к загрязнениям, поэтому в обвязку входят грязевые фильтры, которые подключаются к «подаче» и «обратке».

В обвязку элеватора входят:

  • грязевые фильтры;
  • манометры (на входе и выходе);
  • термодатчики (термометры на входе элеватора, на выходе и на «обратке»);
  • задвижки (для проведения профилактических или аварийных работ).

Это самый простой вариант схемы для регулировки температуры теплоносителя, но она часто используется как базовое устройство теплового узла. Базовый узел элеваторный отопления любых зданий и сооружений, обеспечивает регулировку температуры и давления теплоносителя в контуре.

Преимущества его применения для отопления больших объектов, домов и высоток:


Но при наличии бесспорных преимуществ использования элеватора для систем отопления следует отметить и недостатки применения этого прибора:


Элеватор с автоматической регулировкой

В настоящее время созданы конструкции элеваторов, в которых при помощи электронной регулировки можно изменять сечение сопла. В таком элеваторе имеется механизм, который перемещает дроссельную иглу. Она меняет просвет сопла и в результате меняется расход теплоносителя. Изменение просвета меняет скорость движения воды. В результате изменяется коэффициент смешивания горячей воды и воды из «обратки», чем достигается изменение температуры теплоносителя в «подаче». Теперь понятно, зачем в системе отопления нужно давление воды.

Элеватор регулирует подачу и давление теплоносителя, а его давление движет поток в контуре отопления.

Основные неисправности элеваторного узла

Даже такое простое устройство, как элеваторный узел, может работать неправильно. Неисправности можно определить путем анализа показаний манометров в контрольных точках элеваторного узла:


Распределительные устройства

Элеваторный узел со всей своей обвязкой можно представить как нагнетательный циркуляционный насос, который под определенным давлением подает теплоноситель в отопительную систему.

Если на объекте несколько этажей и потребителей, то самое верное решение – распределение общего потока теплоносителя каждому потребителю.

Для решения таких задач предназначена гребенка для системы отопления, которая имеет другое название – коллектор. Это устройство можно представить в виде емкости. В емкость с выхода элеватора втекает теплоноситель, который затем вытекает через несколько выходов, причем с одинаковым напором.

Следовательно, гребенка распределительная системы отопления позволяет отключение, регулировку, ремонт отдельных потребителей объекта без остановки работы контура отопления. Наличие коллектора исключает взаимное влияние ответвлений системы отопления. При этом давление в соответствует давлению на выходе элеватора.

Клапан трехходовой

При необходимости разделить поток теплоносителя между двумя потребителями применяется клапан трехходовой для отопления, который может работать в двух режимах:

Трехходовой кран устанавливается в тех местах контура отопления, где может возникнуть необходимость разделить или полностью перекрыть поток воды. Материал крана – сталь, чугун или латунь. Внутри крана находится запорное устройство, которое может быть шаровым, цилиндрическим или конусным. Кран напоминает тройник и в зависимости от подключения на системе отопления может работать как смеситель. Пропорции смешивания можно менять в широких пределах.

Применяется шаровой кран в основном для:

  1. регулировки температуры теплых полов;
  2. регулировки температуры батарей;
  3. распределения теплоносителя на два направления.

Существуют два типа трехходовых кранов – запорные и регулировочные. В принципе они практически равнозначны, но запорными трехходовыми кранами труднее плавно регулировать температуру.

47. Расчет водоструйного элеватора

1. Расход сетевой (эжектирующей) воды, т/ч

где Q 0 - расход тепла на отопление, Гкал/ч;

t о - расчетная температура воды в обратной трубе тепловой сети, 0 С;

t под - расчетная температура воды в подающей трубе тепловой

2. Расход смешанной воды, т/ч

,

где t` под - расчетная температура воды в подающей трубе местной системы отопления 0 С;

t` о - расчетная температура воды в обратной трубе местной системы отопления 0 С.

3. Приведенный расход смешанной воды, т/ч

,

где Δp 0 - гидравлическое сопротивление местной системы отопления, МПа.

4. Количество подмешиваемой воды из обратной трубы местной системы отопления, т/ч

.

5. Расчетный коэффициент смешения элеватора

6. Диаметр горловины (камеры смешения) элеватора, мм

7. Диаметр сопла элеватора при минимальном располагаемом давлении перед элеватором, мм

8. Требуемое минимальное располагаемое давление перед элеватором, МПа

.

9. Расчетный диаметр сопла при фактическом располагаемом давлении перед элеватором, мм

,

где Δp ф э - фактическое располагаемое давление перед элеватором, МПа.

В случаях, когда фактическое располагаемое давление перед элеватором Δр ф э меньше минимального Δр мин э , элеватор не может работать исправно и должен быть заменен смесительным насосом. В тех случаях, когда Δр ф э > Δр мин э , диаметр сопла элеватора должен быть соответственно уменьшен.

При выборе номера элеватора по расчетному диаметру камеры смешения следует брать стандартный элеватор с ближайшим меньшим диаметром камеры смешения.

Водоструйные элеваторы типа ВТИ-Теплосеть Мосэнерго по производительности и размерам делятся на семь номеров. Номер элеватора можно определить по номограммам или из таблицы.

Для обеспечения элеваторами требуемой точности регулирования необходимо, чтобы были удовлетворены следующие три условия:

1) потери давления в местной системе отопления за элеватором должны быть постоянными. Желательно, чтобы в отопительной системе потери при наладке были установлены на уровне Δр = 0,01 МПа и периодически проверялись;

2) В элеваторе должен быть обеспечен постоянный расход теплоносителя. Это относится как к подающему, так и к подмешивающему трубопроводу. Постоянство расхода теплоносителя в подающем трубопроводе целесообразно поддерживать автоматически действующим регулятором расхода типа РР, устанавливаемым перед каждым элеватором и одновременно в определенной мере регулирующим давление перед элеватором;

3) Диаметр сопла элеватора должен быть рассчитан в соответствии с конкретными параметрами и условиями работы, однако он должен быть не менее 2,5 мм во избежание его засорения и прекращения работы системы отопления.

48. Выбор типоразмера регулирующего клапана

1. Пропускная способность клапана:

, м 3 /ч

2. Пропускная способность полностью открытого клапана:

4. Проверка на отсутствие кавитации

X F £ Z отсутствие кавитации;

X F – коэффициент дросселирования;

p V – давление парообразования при температуре среды;

Z – коэффициент клапана.

Коэффициент клапана Z Y

Малая серия

Фланцевая (большая) серия

Пример

Нагрузка на систему отопления Q = 14 кВт;

Перепад температур в системах отопления DT = 20 °C;

Потери давления на клапане DP КЛ = 0,15 бар.

Решение:

Расход теплоносителя через клапан:

м 3 /ч.

Пропускная способность полностью открытого клапана:

м 3 /ч.

Данное значение К VS можно также найти по диаграмме.

По К VS = 1,6 м 3 /ч выбирается клапан Д У = 15 мм.

49. Расчет дроссельных шайб

Определение необходимого диаметра дроссельной шайбы d ш, мм, выполняется на основании расчета по формуле

,

где Δр ш - избыточное давление, гасимое дроссельной шайбой, МПа;

G – расход воды, протекающей через дроссельную шайбу, т/ч;

При расчете дроссельной шайбы, устанавливаемой на тепловом вводе

Δр ш =р в - Δр р,

где Δр р – потеря давления в системе отопления при расчетном расходе воды, МПа;

р в – располагаемый напор на тепловом вводе, МПа.