Обслуживание        25.03.2024   

Чему равен угол между параллельными прямыми. Угол между прямыми. Свойства параллельных прямых

На этом уроке мы дадим определение сонаправленных лучей и докажем теорему о равенстве углов с сонаправленными сторонами. Далее дадим определение угла между пересекающимися прямыми и скрещивающимися прямыми. Рассмотрим, каким может быть угол между двумя прямыми. В конце урока решим несколько задач на нахождение углов между скрещивающимися прямыми.

Тема: Параллельность прямых и плоскостей

Урок: Углы с сонаправленными сторонами. Угол между двумя прямыми

Любая прямая, например ОО 1 (Рис. 1.), рассекает плоскость на две полуплоскости. Если лучи ОА и О 1 А 1 параллельны и лежат в одной полуплоскости, то они называются сонаправленными .

Лучи О 2 А 2 и ОА не являются сонаправленными (Рис. 1.). Они параллельны, но не лежат в одной полуплоскости.

Если стороны двух углов сонаправленны, то такие углы равны.

Доказательство

Пусть нам даны параллельные лучи ОА и О 1 А 1 и параллельные лучи ОВ и О 1 В 1 (Рис. 2.). То есть, мы имеем два угла АОВ и А 1 О 1 В 1 , чьи стороны лежат на сонаправленных лучах. Докажем, что эти углы равны.

На стороне луча ОА и О 1 А 1 выберем точки А и А 1 так, чтобы отрезки ОА и О 1 А 1 были равны. Аналогично, точки В и В 1 выберем так, чтобы отрезки ОВ и О 1 В 1 были равны.

Рассмотрим четырехугольник А 1 О 1 ОА (Рис. 3.) ОА и О 1 А 1 А 1 О 1 ОА А 1 О 1 ОА ОО 1 и АА 1 параллельны и равны.

Рассмотрим четырехугольник В 1 О 1 ОВ . В этом четырехугольники стороны ОВ и О 1 В 1 параллельны и равны. По признаку параллелограмма, четырехугольник В 1 О 1 ОВ является параллелограммом. Так как В 1 О 1 ОВ - параллелограмм, то стороны ОО 1 и ВВ 1 параллельны и равны.

И прямая АА 1 параллельна прямой ОО 1 , и прямая ВВ 1 параллельна прямой ОО 1 , значит прямые АА 1 и ВВ 1 параллельны.

Рассмотрим четырехугольник В 1 А 1 АВ . В этом четырехугольники стороны АА 1 и ВВ 1 параллельны и равны. По признаку параллелограмма, четырехугольник В 1 А 1 АВ является параллелограммом. Так как В 1 А 1 АВ - параллелограмм, то стороны АВ и А 1 В 1 параллельны и равны.

Рассмотрим треугольники АОВ и А 1 О 1 В 1 . Стороны ОА и О 1 А 1 равны по построению. Стороны ОВ и О 1 В 1 также равны по построению. А как мы доказали, и стороны АВ и А 1 В 1 тоже равны. Значит, треугольники АОВ и А 1 О 1 В 1 равны по трем сторонам. В равных треугольниках против равных сторон лежат равные углы. Значит, углы АОВ и А 1 О 1 В 1 равны, что и требовалось доказать.

1) Пересекающиеся прямые.

Если прямые пересекающиеся, то мы имеем четыре разных угла. Углом между двумя прямыми , называется наименьший из углов между двумя прямыми. Угол между пересекающимися прямыми а и b обозначим α (Рис. 4.). Угол α такой, что .

Рис. 4. Угол между двумя пересекающимимся прямыми

2) Скрещивающиеся прямые

Пусть прямые а и b скрещивающиеся. Выберем произвольную точку О . Через точку О проведем прямую а 1 , параллельную прямой а , и прямую b 1 , параллельную прямой b (Рис. 5.). Прямые а 1 и b 1 пересекаются в точке О . Угол между двумя пересекающимися прямыми а 1 и b 1 , угол φ, и называется углом между скрещивающимися прямыми.

Рис. 5. Угол между двумя скрещивающимися прямыми

Зависит ли величина угла от выбранной точки О? Выберем точку О 1 . Через точку О 1 проведем прямую а 2 , параллельную прямой а , и прямую b 2 , параллельную прямой b (Рис. 6.). Угол между пересекающимися прямыми а 2 и b 2 обозначим φ 1 . Тогда углы φ и φ 1 - углы с сонаправленными сторонами. Как мы доказали, такие углы равны между собой. Значит, величина угла между скрещивающимися прямыми не зависит от выбора точки О .

Прямые ОВ и СD параллельны, ОА и СD скрещиваются. Найдите угол между прямыми ОА и СD , если:

1) ∠АОВ = 40°.

Выберем точку С . Через нее проходи прямая СD . Проведем СА 1 параллельно ОА (Рис. 7.). Тогда угол А 1 СD - угол между скрещивающимися прямыми ОА и СD . По теореме об углах с сонаправленными сторонами, угол А 1 СD равен углу АОВ , то есть 40°.

Рис. 7. Найти угол между двумя прямыми

2) ∠АОВ = 135°.

Сделаем то же самое построение (Рис. 8.). Тогда угол между скрещивающимися прямыми ОА и СD равен 45°, так как он наименьший из углов, которые получаются при пересечении прямых СD и СА 1 .

3) ∠АОВ = 90°.

Сделаем то же самое построение (Рис. 9.). Тогда все углы, которые получаются при пересечении прямых СD и СА 1 равны 90°. Искомый угол равен 90°.

1) Докажите, что середины сторон пространственного четырехугольника являются вершинами параллелограмма.

Доказательство

Пусть нам дан пространственный четырехугольник ABCD . M, N, K, L - середины ребер BD, AD, AC, BC соответственно (Рис. 10.). Нужно доказать, что MNKL - параллелограмм.

Рассмотрим треугольник АВD . МN МN параллельна АВ и равняется ее половине.

Рассмотрим треугольник АВС . - средняя линия. По свойству средней линии, параллельна АВ и равняется ее половине.

И МN , и параллельны АВ . Значит, МN параллельна по теореме о трех параллельных прямых.

Получаем, что в четырехугольнике MNKL - стороны МN и параллельны и равны, так как МN и равны половине АВ . Значит, по признаку параллелограмма, четырехугольник MNKL - параллелограмм, что и требовалось доказать.

2) Найдите угол между прямыми АВ и СD , если угол МNК = 135°.

Как мы уже доказали, МN параллельна прямой АВ . - средняя линия треугольника АСD , по свойству, параллельна . Значит, через точку N проходят две прямые МN и , которые параллельны скрещивающимся прямым АВ и соответственно. Значит, угол между прямыми МN и является углом между скрещивающимися прямыми АВ и . Нам дан тупой угол МNК = 135°. Угол между прямыми МN и - наименьший из углов, полученных при пересечении этих прямых, то есть 45°.

Итак, мы рассмотрели углы с сонаправленными сторонами и доказали их равенство. Рассмотрели углы между пересекающимися и скрещивающимися прямыми и решили несколько задач на нахождение угла между двумя прямыми. На следующем уроке мы продолжим решение задач и повторение теории.

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М. : Мнемозина, 2008. - 288 с. : ил.

2. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил.

3. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. - 6-е издание, стереотип. - М. : Дрофа, 008. - 233 с. :ил.

В) BC и D 1 В 1 .

Рис. 11. Найти угол между прямыми

4. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил.

Задания 13, 14, 15 стр. 54

AB и С D пересечены третьей прямой MN , то образовавшиеся при этом углы получают попарно такие названия:

соответственные углы : 1 и 5, 4 и 8, 2 и 6, 3 и 7;

внутренние накрест лежащие углы : 3 и 5, 4 и 6;

внешние накрест лежащие углы : 1 и 7, 2 и 8;

внутренние односторонние углы : 3 и 6, 4 и 5;

внешние односторонние углы : 1 и 8, 2 и 7.

Так, ∠ 2 = ∠ 4 и ∠ 8 = ∠ 6, но по доказанному ∠ 4 = ∠ 6.

Следовательно, ∠ 2 =∠ 8.

3. Соответственные углы 2 и 6 одинаковы, поскольку ∠ 2 = ∠ 4, а ∠ 4 = ∠ 6. Также убедимся в равенстве других соответственных углов.

4. Сумма внутренних односторонних углов 3 и 6 будет 2d, потому что сумма смежных углов 3 и 4 равна 2d = 180 0 , а ∠ 4 можно заменить идентичным ему ∠ 6. Также убедимся, что сумма углов 4 и 5 равна 2d.

5. Сумма внешних односторонних углов будет 2d, потому что эти углы равны соответственно внутренним односторонним углам , как углы вертикальные .

Из выше доказанного обоснования получаем обратные теоремы.

Когда при пересечении двух прямых произвольной третьей прямой получим, что:

1. Внутренние накрест лежащие углы одинаковы;

или 2. Внешние накрест лежащие углы одинаковые;

или 3. Соответственные углы одинаковые;

или 4. Сумма внутренних односторонних углов равна 2d = 180 0 ;

или 5. Сумма внешних односторонних равна 2d = 180 0 ,

то первые две прямые параллельны.

Две прямые AB и CD называются параллельными , если они лежат в одной плоскости и не пересекаются, сколько бы их ни продолжать (AB|| CD). Угол между параллельными прямыми равен нулю.

Длина отрезка перпендикуляра, заключённого между двумя параллельными прямыми,- расстояние между ними.

Аксиома: через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной прямой.

Свойства параллельных прямых:

1. Если две прямые параллельны третьей прямой, то они параллельны между собой.

2. Если две прямые перпендикулярны третьей прямой, то они параллельны друг другу.

При пересечении двух параллельных прямых третьей прямой, образуются восемь углов (рис.13), которые попарно называются:

1) соответственные углы (1 и 5; 2 и 6; 3 и 7; 4 и 8 );

углы попарно равны : (https://pandia.ru/text/78/187/images/image003_66.gif" width="11" height="10 src=">5; https://pandia.ru/text/78/187/images/image003_66.gif" width="11" height="10">6; https://pandia.ru/text/78/187/images/image003_66.gif" width="11" height="10">7; https://pandia.ru/text/78/187/images/image003_66.gif" width="11" height="10">8 );

2) внутренние накрест лежащие углы (4 и 5; 3 и 6 ); они попарно равны ;

3) внешние накрест лежащие углы (1 и 8; 2 и 7 ); они попарно равны;

4) внутренние односторонние углы (3 и 5; 4 и 6 ); сумма односторонних углов равна 180 °

(https://pandia.ru/text/78/187/images/image003_66.gif" width="11" height="10">5 = 180° ; 4 + 6 = 180°);

5) внешние односторонние углы (1 и 7; 2 и 8 ); их сумма равна 180° (https://pandia.ru/text/78/187/images/image003_66.gif" width="11" height="10">7 = 180°; 2 + 8 = 180°).

Теорема Фалеса. При пересечении сторон угла параллельными прямыми (рис.16) стороны угла делятся на пропорциональные отрезки:

Подобные треугольники.

Два треугольника называются подобными , если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого. Сходственные стороны подобных треугольников - это стороны, лежащие напротив равных углов.

https://pandia.ru/text/78/187/images/image006_51.gif" alt="подобные треугольники" width="13" height="14">A = https://pandia.ru/text/78/187/images/image006_51.gif" alt="подобные треугольники" width="13" height="14">B = B1, С = С1 и Число k , равное отношению сходственных сторон треугольника называется коэффициентом подобия .

Признаки подобия:

1. Если два угла одного треугольника соответственно равны двум углам другого, то треуг-ки подобны.

2. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами , равны , то треугольники подобны.

3. Если три стороны одного треугольника пропорциональны трем сторонам другого , то такие треугольники подобны.

Следствия: 1. Площади подобных треугольников относятся как квадрат коэффициента подобия:

2. Отношение периметров подобных треугольников и биссектрис , медиан, высот и серединных перпендикуляров равно коэффициенту подобия.

Определение . Углом между скрещивающимися прямыми называется угол между пересекающимися прямыми, параллельными данным скрещивающимся прямыми.

Пример . Дан куб ABCDA 1 B 1 C 1 D 1 . Найти угол между скрещивающимися прямыми A 1 B и C 1 D .

В грани CDD 1 C 1 проводим диагональ CD 1 ;

CD 1 || BA 1  (A 1 B ;C 1 D) = (CD 1 ;C 1 D) =90 0 (угол между диагоналями квадрата).

D 1

С 1

В 1

А 1

. Угол между прямой и плоскостью.

Если прямая параллельна плоскости или лежит в ней, то угол между данными прямыми и плоскостью считается равным 0 0 .

Определение . Прямая называется перпендикулярной к плоскости , если она перпендикулярна любой прямой, лежащей в этой плоскости. В этом случае угол между прямой и плоскостью считается равным 90 0 .

Определение . Прямая называется наклонной к некоторой плоскости, если она пересекает эту плоскость, но не перпендикулярна ей.

MK 

MN – наклонная к 

KN проекция MN на 

Определение . Углом между наклонной к плоскости и этой плоскостью называется угол между наклонной и её проекцией на данную плоскость.

(MN ;) = (MN ;KN ) = MNK = 

Теорема 7 (о трех перпендикулярах ) . Наклонная к плоскости перпендикулярна прямой, лежащей в плоскости тогда и только тогда, когда проекция этой наклонной на эту плоскость, перпендикулярна данной прямой.

MK 

MN – наклонная к 

KN проекция MN на 

m

MN m KN m

. Расстояния в пространстве.

Определение . Расстоянием от точки до прямой, не содержащей эту точку, называется длина отрезка перпендикуляра, проведённого из этой точки к данной плоскости.

Определение . Расстоянием от точки до плоскости , не содержащей эту точку, называется длина перпендикуляра, проведённого из этой точки к данной плоскости.

Расстояние между параллельными прямыми равно расстоянию от любой точки одной из этих прямых до другой прямой.

Расстояние между параллельными плоскостями равно расстоянию от произвольной точки одной из плоскостей до другой плоскости.

Расстояние между прямой и параллельной ей плоскостью равно расстоянию от любой точки этой прямой до плоскости.

Определение . Расстоянием между двумя скрещивающимися прямыми называется длина их общего перпендикуляра.

Расстояние между скрещивающимися прямыми равно расстоянию от любой точки одной из этих прямых до плоскости, проходящей через вторую прямую параллельно первой прямой (другими словами: расстоянию между двумя параллельными плоскостями, содержащими эти прямые).

V. Угол между плоскостями. Двугранный угол.

Если плоскости параллельны, то угол между ними считается равным 0 0 .

Определение . Двугранным углом называется геометрическая фигура, образованная двумя полуплоскостями с общей границей не лежащими в одной плоскости. Полуплоскости называются гранями , а их общая граница ребром двугранного угла .

Определение . Линейным углом двугранного угла называется угол, полученный при пересечении данного двугранного угла плоскостью, перпендикулярной его ребру. Все линейные углы данного двугранного угла равны между собой. Величина двугранного угла равна величине его линейного угла.

Пример . Дана пирамида MABCD , основание которой – квадрат ABCD со стороной 2, MA ABC , MA = 2. Найдите угол наклона грани MBC плоскости основания.

(по признаку перпендикулярности прямой и плоскости).

Таким образом, плоскость MAB пересекает двугранный угол с ребром BC и перпендикулярна ему. Следовательно, по определению линейного угла: MBA – линейный угол данного двугранного угла.

Данный материал посвящен такому понятию, как угол между двумя пересекающимися прямыми. В первом пункте мы поясним, что он из себя представляет, и покажем его на иллюстрациях. Потом разберем, какими способами можно найти синус, косинус этого угла и сам угол (отдельно рассмотрим случаи с плоскостью и трехмерным пространством), приведем нужные формулы и покажем на примерах, как именно они применяются на практике.

Yandex.RTB R-A-339285-1

Для того чтобы понять, что такое угол, образующийся при пересечении двух прямых, нам потребуется вспомнить само определение угла, перпендикулярности и точки пересечения.

Определение 1

Мы называем две прямые пересекающимися, если у них есть одна общая точка. Эта точка называется точкой пересечения двух прямых.

Каждая прямая разделяется точкой пересечения на лучи. Обе прямые при этом образуют 4 угла, из которых два – вертикальные, а два – смежные. Если мы знаем меру одного из них, то можем определить и другие оставшиеся.

Допустим, нам известно, что один из углов равен α . В таком случае угол, который является вертикальным по отношению к нему, тоже будет равен α . Чтобы найти оставшиеся углы, нам надо вычислить разность 180 ° - α . Если α будет равно 90 градусам, то все углы будут прямыми. Пересекающиеся под прямым углом линии называются перпендикулярными (понятию перпендикулярности посвящена отдельная статья).

Взгляните на рисунок:

Перейдем к формулированию основного определения.

Определение 2

Угол, образованный двумя пересекающимися прямыми – это мера меньшего из 4 -х углов, которые образуют две эти прямые.

Из определения нужно сделать важный вывод: размер угла в этом случае будет выражен любым действительным числом в интервале (0 , 90 ] . Если прямые являются перпендикулярными, то угол между ними в любом случае будет равен 90 градусам.

Умение находить меру угла между двумя пересекающимися прямыми полезно для решения многих практических задач. Метод решения можно выбрать из нескольких вариантов.

Для начала мы можем взять геометрические методы. Если нам известно что-то о дополнительных углах, то можно связать их с нужным нам углом, используя свойства равных или подобных фигур. Например, если мы знаем стороны треугольника и нужно вычислить угол между прямыми, на которых эти стороны расположены, то для решения нам подойдет теорема косинусов. Если у нас в условии есть прямоугольный треугольник, то для подсчетов нам также пригодится знание синуса, косинуса и тангенса угла.

Координатный метод тоже весьма удобен для решения задач такого типа. Поясним, как правильно его использовать.

У нас есть прямоугольная (декартова) система координат O x y , в которой заданы две прямые. Обозначим их буквами a и b . Прямые при этом можно описать с помощью каких-либо уравнений. Исходные прямые имеют точку пересечения M . Как определить искомый угол (обозначим его α) между этими прямыми?

Начнем с формулировки основного принципа нахождения угла в заданных условиях.

Нам известно, что с понятием прямой линии тесно связаны такие понятия, как направляющий и нормальный вектор. Если у нас есть уравнение некоторой прямой, из него можно взять координаты этих векторов. Мы можем сделать это сразу для двух пересекающихся прямых.

Угол, образуемый двумя пересекающимися прямыми, можно найти с помощью:

  • угла между направляющими векторами;
  • ­угла между нормальными векторами;
  • угла между нормальным вектором одной прямой и направляющим вектором другой.

Теперь рассмотрим каждый способ отдельно.

1. Допустим, что у нас есть прямая a с направляющим вектором a → = (a x , a y) и прямая b с направляющим вектором b → (b x , b y) . Теперь отложим два вектора a → и b → от точки пересечения. После этого мы увидим, что они будут располагаться каждый на своей прямой. Тогда у нас есть четыре варианта их взаимного расположения. См. иллюстрацию:

Если угол между двумя векторами не является тупым, то он и будет нужным нам углом между пересекающимися прямыми a и b . Если же он тупой, то искомый угол будет равен углу, смежному с углом a → , b → ^ . Таким образом, α = a → , b → ^ в том случае, если a → , b → ^ ≤ 90 ° , и α = 180 ° - a → , b → ^ , если a → , b → ^ > 90 ° .

Исходя из того, что косинусы равных углов равны, мы можем переписать получившиеся равенства так: cos α = cos a → , b → ^ , если a → , b → ^ ≤ 90 ° ; cos α = cos 180 ° - a → , b → ^ = - cos a → , b → ^ , если a → , b → ^ > 90 ° .

Во втором случае были использованы формулы приведения. Таким образом,

cos α cos a → , b → ^ , cos a → , b → ^ ≥ 0 - cos a → , b → ^ , cos a → , b → ^ < 0 ⇔ cos α = cos a → , b → ^

Запишем последнюю формулу словами:

Определение 3

Косинус угла, образованного двумя пересекающимися прямыми, будет равен модулю косинуса угла между его направляющими векторами.

Общий вид формулы косинуса угла между двумя векторами a → = (a x , a y) и b → = (b x , b y) выглядит так:

cos a → , b → ^ = a → , b → ^ a → · b → = a x · b x + a y + b y a x 2 + a y 2 · b x 2 + b y 2

Из нее мы можем вывести формулу косинуса угла между двумя заданными прямыми:

cos α = a x · b x + a y + b y a x 2 + a y 2 · b x 2 + b y 2 = a x · b x + a y + b y a x 2 + a y 2 · b x 2 + b y 2

Тогда сам угол можно найти по следующей формуле:

α = a r c cos a x · b x + a y + b y a x 2 + a y 2 · b x 2 + b y 2

Здесь a → = (a x , a y) и b → = (b x , b y) – это направляющие векторы заданных прямых.

Приведем пример решения задачи.

Пример 1

В прямоугольной системе координат на плоскости заданы две пересекающиеся прямые a и b . Их можно описать параметрическими уравнениями x = 1 + 4 · λ y = 2 + λ λ ∈ R и x 5 = y - 6 - 3 . Вычислите угол между этими прямыми.

Решение

У нас в условии есть параметрическое уравнение, значит, для этой прямой мы сразу можем записать координаты ее направляющего вектора. Для этого нам нужно взять значения коэффициентов при параметре, т.е. прямая x = 1 + 4 · λ y = 2 + λ λ ∈ R будет иметь направляющий вектор a → = (4 , 1) .

Вторая прямая описана с помощью канонического уравнения x 5 = y - 6 - 3 . Здесь координаты мы можем взять из знаменателей. Таким образом, у этой прямой есть направляющий вектор b → = (5 , - 3) .

Далее переходим непосредственно к нахождению угла. Для этого просто подставляем имеющиеся координаты двух векторов в приведенную выше формулу α = a r c cos a x · b x + a y + b y a x 2 + a y 2 · b x 2 + b y 2 . Получаем следующее:

α = a r c cos 4 · 5 + 1 · (- 3) 4 2 + 1 2 · 5 2 + (- 3) 2 = a r c cos 17 17 · 34 = a r c cos 1 2 = 45 °

Ответ : данные прямые образуют угол в 45 градусов.

Мы можем решить подобную задачу с помощью нахождения угла между нормальными векторами. Если у нас есть прямая a с нормальным вектором n a → = (n a x , n a y) и прямая b с нормальным вектором n b → = (n b x , n b y) , то угол между ними будет равен углу между n a → и n b → либо углу, который будет смежным с n a → , n b → ^ . Этот способ показан на картинке:

Формулы для вычисления косинуса угла между пересекающимися прямыми и самого этого угла с помощью координат нормальных векторов выглядят так:

cos α = cos n a → , n b → ^ = n a x · n b x + n a y + n b y n a x 2 + n a y 2 · n b x 2 + n b y 2 α = a r c cos n a x · n b x + n a y + n b y n a x 2 + n a y 2 · n b x 2 + n b y 2

Здесь n a → и n b → обозначают нормальные векторы двух заданных прямых.

Пример 2

В прямоугольной системе координат заданы две прямые с помощью уравнений 3 x + 5 y - 30 = 0 и x + 4 y - 17 = 0 . Найдите синус, косинус угла между ними и величину самого этого угла.

Решение

Исходные прямые заданы с помощью нормальных уравнений прямой вида A x + B y + C = 0 . Нормальный вектор обозначим n → = (A , B) . Найдем координаты первого нормального вектора для одной прямой и запишем их: n a → = (3 , 5) . Для второй прямой x + 4 y - 17 = 0 нормальный вектор будет иметь координаты n b → = (1 , 4) . Теперь добавим полученные значения в формулу и подсчитаем итог:

cos α = cos n a → , n b → ^ = 3 · 1 + 5 · 4 3 2 + 5 2 · 1 2 + 4 2 = 23 34 · 17 = 23 2 34

Если нам известен косинус угла, то мы можем вычислить его синус, используя основное тригонометрическое тождество. Поскольку угол α , образованный прямыми, не является тупым, то sin α = 1 - cos 2 α = 1 - 23 2 34 2 = 7 2 34 .

В таком случае α = a r c cos 23 2 34 = a r c sin 7 2 34 .

Ответ: cos α = 23 2 34 , sin α = 7 2 34 , α = a r c cos 23 2 34 = a r c sin 7 2 34

Разберем последний случай – нахождение угла между прямыми, если нам известны координаты направляющего вектора одной прямой и нормального вектора другой.

Допустим, что прямая a имеет направляющий вектор a → = (a x , a y) , а прямая b – нормальный вектор n b → = (n b x , n b y) . Нам надо отложить эти векторы от точки пересечения и рассмотреть все варианты их взаимного расположения. См. на картинке:

Если величина угла между заданными векторами не более 90 градусов, получается, что он будет дополнять угол между a и b до прямого угла.

a → , n b → ^ = 90 ° - α в том случае, если a → , n b → ^ ≤ 90 ° .

Если он менее 90 градусов, то мы получим следующее:

a → , n b → ^ > 90 ° , тогда a → , n b → ^ = 90 ° + α

Используя правило равенства косинусов равных углов, запишем:

cos a → , n b → ^ = cos (90 ° - α) = sin α при a → , n b → ^ ≤ 90 ° .

cos a → , n b → ^ = cos 90 ° + α = - sin α при a → , n b → ^ > 90 ° .

Таким образом,

sin α = cos a → , n b → ^ , a → , n b → ^ ≤ 90 ° - cos a → , n b → ^ , a → , n b → ^ > 90 ° ⇔ sin α = cos a → , n b → ^ , a → , n b → ^ > 0 - cos a → , n b → ^ , a → , n b → ^ < 0 ⇔ ⇔ sin α = cos a → , n b → ^

Сформулируем вывод.

Определение 4

Чтобы найти синус угла между двумя прямыми, пересекающимися на плоскости, нужно вычислить модуль косинуса угла между направляющим вектором первой прямой и нормальным вектором второй.

Запишем необходимые формулы. Нахождение синуса угла:

sin α = cos a → , n b → ^ = a x · n b x + a y · n b y a x 2 + a y 2 · n b x 2 + n b y 2

Нахождение самого угла:

α = a r c sin = a x · n b x + a y · n b y a x 2 + a y 2 · n b x 2 + n b y 2

Здесь a → является направляющим вектором первой прямой, а n b → – нормальным вектором второй.

Пример 3

Две пересекающиеся прямые заданы уравнениями x - 5 = y - 6 3 и x + 4 y - 17 = 0 . Найдите угол пересечения.

Решение

Берем координаты направляющего и нормального вектора из заданных уравнений. Получается a → = (- 5 , 3) и n → b = (1 , 4) . Берем формулу α = a r c sin = a x · n b x + a y · n b y a x 2 + a y 2 · n b x 2 + n b y 2 и считаем:

α = a r c sin = - 5 · 1 + 3 · 4 (- 5) 2 + 3 2 · 1 2 + 4 2 = a r c sin 7 2 34

Обратите внимание, что мы взяли уравнения из предыдущей задачи и получили точно такой же результат, но другим способом.

Ответ: α = a r c sin 7 2 34

Приведем еще один способ нахождения нужного угла с помощью угловых коэффициентов заданных прямых.

У нас есть прямая a , которая задана в прямоугольной системе координат с помощью уравнения y = k 1 · x + b 1 , и прямая b , заданная как y = k 2 · x + b 2 . Это уравнения прямых с угловым коэффициентом. Чтобы найти угол пересечения, используем формулу:

α = a r c cos k 1 · k 2 + 1 k 1 2 + 1 · k 2 2 + 1 , где k 1 и k 2 являются угловыми коэффициентами заданных прямых. Для получения этой записи были использованы формулы определения угла через координаты нормальных векторов.

Пример 4

Есть две пересекающиеся на плоскости прямые, заданные уравнениями y = - 3 5 x + 6 и y = - 1 4 x + 17 4 . Вычислите величину угла пересечения.

Решение

Угловые коэффициенты наших прямых равны k 1 = - 3 5 и k 2 = - 1 4 . Добавим их в формулу α = a r c cos k 1 · k 2 + 1 k 1 2 + 1 · k 2 2 + 1 и подсчитаем:

α = a r c cos - 3 5 · - 1 4 + 1 - 3 5 2 + 1 · - 1 4 2 + 1 = a r c cos 23 20 34 24 · 17 16 = a r c cos 23 2 34

Ответ: α = a r c cos 23 2 34

В выводах этого пункта следует отметить, что приведенные здесь формулы нахождения угла не обязательно учить наизусть. Для этого достаточно знать координаты направляющих и/или нормальных векторов заданных прямых и уметь определять их по разным типам уравнений. А вот формулы для вычисления косинуса угла лучше запомнить или записать.

Как вычислить угол между пересекающимися прямыми в пространстве

Вычисление такого угла можно свести к вычислению координат направляющих векторов и определению величины угла, образованного этими векторами. Для таких примеров используются такие же рассуждения, которые мы приводили до этого.

Допустим, что у нас есть прямоугольная система координат, расположенная в трехмерном пространстве. В ней заданы две прямые a и b с точкой пересечения M . Чтобы вычислить координаты направляющих векторов, нам нужно знать уравнения этих прямых. Обозначим направляющие векторы a → = (a x , a y , a z) и b → = (b x , b y , b z) . Для вычисления косинуса угла между ними воспользуемся формулой:

cos α = cos a → , b → ^ = a → , b → a → · b → = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

Для нахождения самого угла нам понадобится эта формула:

α = a r c cos a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

Пример 5

У нас есть прямая, заданная в трехмерном пространстве с помощью уравнения x 1 = y - 3 = z + 3 - 2 . Известно, что она пересекается с осью O z . Вычислите угол пересечения и косинус этого угла.

Решение

Обозначим угол, который надо вычислить, буквой α . Запишем координаты направляющего вектора для первой прямой – a → = (1 , - 3 , - 2) . Для оси аппликат мы можем взять координатный вектор k → = (0 , 0 , 1) в качестве направляющего. Мы получили необходимые данные и можем добавить их в нужную формулу:

cos α = cos a → , k → ^ = a → , k → a → · k → = 1 · 0 - 3 · 0 - 2 · 1 1 2 + (- 3) 2 + (- 2) 2 · 0 2 + 0 2 + 1 2 = 2 8 = 1 2

В итоге мы получили, что нужный нам угол будет равен a r c cos 1 2 = 45 ° .

Ответ: cos α = 1 2 , α = 45 ° .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter