Утепление и обогрев        25.09.2019   

Алгоритмы составления химических формул. Составление химических формул

Урок в 8 классе

Тема: « Составление химических формул по валентности».

Цели:

    закрепить умения определять валентность по формулам соединений;

    ввести понятие «бинарные соединения»;

    научить составлять названия бинарных соединений по их формулам;

    научить составлять формулы соединений по валентности элементов.

(Вы узнаете :

    какие вещества называют бинарными;

    как правильно составлять название бинарного соединения;

    как с помощью валентности уточняют названия веществ;

    как по названию бинарных соединений составляют их формулы.

Вспомните :

    что такое валентность;

    как определить валентность, зная формулу вещества.)

Ход урока.

    Организационный момент. Проверка домашнего задания.

    Что такое валентность химических элементов?

    Почему валентность водорода принята за единицу?

    Какие химические элементы имеют постоянную валентность?

    Какие химические элементы имеют переменную валентность?

    Новая тема.

На прошлом уроке мы научились определять валентность химических элементов по формулам веществ. Определите валентность элементов в данных соединениях.

(самостоятельно, потом проверка со всем классом)

Na 2 O SO 3 Fe 2 O 3 Ag 2 O CaH 2 H 2 S

Во всех этих соединениях валентность одного элемента мы знали. А если нет химического элемента с известной валентностью? На помощь придет ПСХЭ (8 групп, металлы и неметаллы).

Правила по определению валентности:

    Валентность металлов, находящихся в группе А равна номеру группы.

    Неметаллы проявляют две валентности: максимальную, равную номеру группы и минимальную, равную 8 – номер группы.

Давайте посмотрим еще раз на ряд соединений, написанный на доске. Что общего в этих соединениях?

(сложные вещества; состоят из двух химических элементов)

Соединения, образованные атомами двух химических элементов называются бинарными . Приведите еще пример бинарного соединения, с которым встречаетесь каждый день (вода ).

Сейчас мы с вами научимся давать названия бинарным соединениям. В химии для названия веществ и составления формул разработаны специальные правила, которые называют номенклатурой. Лишь для небольшого числа веществ сохраняются так называемые тривиальные названия (т.е. исторически сложившиеся). С правилами химической номенклатуры мы будем знакомиться постепенно, по мере ознакомления с классификацией веществ.

Составление названий бинарных соединений (приложение 1):

    Называем химический элемент, знак которого в формуле находится на втором месте. Используем его латинское название. Выделяем корень и добавляем к нему суффикс – ид.

Презентация, слайд 2.

Дать названия веществам, изображенным на доске. (Все вместе).

Давайте составим номенклатурные названия углекислого и угарного газов:

углекислый газ – СО 2 – оксид углерода;

угарный газ – СО – оксид углерода.

Получилось, что у разных веществ одинаковые названия. А такого быть не может. Что же нам делать?

Здесь поможет валентность. Определите валентность углерода в этих соединениях. Записывают: оксид углерода (IV ), оксид углерода (II ).

Зная валентность элементов, мы можем составлять формулы веществ. Составим формулу оксида азота (V ). Для этого нужно выполнить следующие действия (приложение 2, презентация, слайд 3):

    Найти НОК.

    Разделить НОК на валентность элементов.

Презентация, слайд 4.

Пользуясь алгоритмом, составьте формулу оксида алюминия.

    Итог урока.

Определите валентность атомов хрома в соединениях:

CrO 3

CrO

Cr 2 O 3

Дайте им названия.

Проверка: презентация, слайд 6.

    Домашнее задание.

§12, вопросы 4-7 стр.37 (письменно), задача 2 стр. 37.

Приложение 1. Составление названий бинарных соединений:

    Называем химический элемент, знак которого в формуле находится на втором месте. Используем его латинское название. Выделяем корень и добавляем к нему суффикс –ид.

    Называем химический элемент, знак которого в формуле вещества стоит на первом месте. Используем русское название в родительном падеже.

CaO окс ид кальция

NaCl хлор ид натрия

PbS сульф ид свинца

Знак химического элемента

Латинское название

Русское название

Са

кальций

окс игениум

кислород

натрий

хлор ум

хлор

свинец

сульф ур

сера

Приложение 2. Составление химических формул бинарных соединений по их названиям.

оксид азота ( V )

    Записать знаки химических элементов. N O

V II

    Обозначить валентность элементов. N O

10

    Найти НОК.

    Разделить НОК на валентность элементов. [ N] 10 : V=2 [O] 10 : II = 5

    Расставить индексы (справа внизу). N 2 O 5

«Знание шрифтов – одно из самых элементарных требований, предъявляемых к сыщику!», - так наставлял когда-то великий Шерлок Холмс своего друга и летописца доктора Ватсона. Аналогично этому, можно смело сказать: «Знание того, как составляются химические формулы – одно из самых элементарных требований, предъявляемых к химику!» В самом деле, как можно рассуждать о превращениях веществ, не умея составлять их формулы ?

Вам понадобится

  • - таблица Менделеева.

Инструкция

Тут вам надо опираться на такое понятие, как « », то есть способность атома одного вещества присоединять к себе определенное количество атомов другого вещества. Валентность любого элемента можно узнать, заглянув в таблицу Менделеева и помня некоторые общие правила.

Валентность металла, находящегося в «главной» подгруппе, равна номеру группы. Например, щелочные металлы литий, натрий, калий и т.д. – одновалентные, щелочноземельные кальций, стронций, барий и т.д. – двухвалентные.

Неметаллы имеют две валентности – высшую (которая равна номеру группы) и низшую (которую определяют, вычитая из 8 номер группы). В соединениях с металлами неметаллы имеют низшую валентность!

Если два неметалла соединяются между собой, то низшую валентность проявляет тот неметалл, который находится в Таблице Менделеева правее и выше. Фтор является исключением из этих правил, и всегда проявляет валентность, равную 1.

Необходимо также помнить, что в соединениях, состоящих из двух элементов, общее число валентностей одного элемента всегда должно быть равно общему количеству валентностей другого элемента!

Запомнив эти весьма несложные положения, вы сможете легко составлять химические формулы . Например, какова будет формула фосфорного ангидрида, то есть оксида фосфора? Во-первых, сразу возьмите на заметку: и фосфор, и кислород – неметаллы. Во-вторых, смотрите в таблицу Менделеева. Фосфор располагается в пятой группе, кислород – в шестой. Следовательно, низшую валентность в этом соединении проявит кислород, и она будет равна 2 (8 – 6 = 2). Валентность фосфора, соответственно, будет равна 5.

Какие же коэффициенты надо подставить и к фосфору, и к кислороду, чтобы соблюсти правило: сумма валентностей одного элемента должна равняться сумме валентностей второго? Легко можно увидеть, что для цифр 2 и 5 наименьшее общее кратное - 10. Следовательно, искомая формула фосфорного ангидрида такова: Р2О5.

Ну, а какова будет формула азида лития, то есть, вещества, образованного неметаллом азотом и щелочным металлом литием? Литий имеет валентность, равную 1. Азот, располагаясь в 5 группе, может иметь высшую валентность, равную 5, и низшую, равную 3. А поскольку в соединениях с металлами неметаллы имеют низшую валентность, легко вывести формулу этого соединения: Li3N.


Внимание, только СЕГОДНЯ!

Все интересное

Периодическая система химических элементов – это уникальный справочный материал, который нужно правильно «читать», а затем воспользоваться полученной информацией. Помимо этого таблица Д.И. Менделеева считается разрешенным материалом на…

Валентность – один из основных терминов, употребляемых в теории химического строения. Это понятие определяет способность атома образовывать химические связи и количественно представляет собой число связей, в которых он участвует. Инструкция …

Химическая формула – это условное обозначение, написанное с помощью определенных символов и характеризующее состав любого вещества. С помощью химической формулы вы можете увидеть, атомы каких элементов и в каких количествах входят в состав той или…

Валентность – важнейшее понятие химии. Физический смысл этого понятия стал ясен благодаря развитию учения о химической связи. Валентность атома определяется числом ковалентных связей, которыми он соединен с другими атомами. Инструкция 1Главную…

Валентность - это способность атома вступать во взаимодействие с другими атомами, образуя с ними химические связи. В создание теории валентности внесли большой вклад многие ученые, прежде всего, немец Кекуле и наш соотечественник Бутлеров.…

Количество известных химических соединений исчисляется миллионами. По мере развития науки и производства их будет становиться все больше, и запомнить их все не в состоянии даже самый квалифицированный специалист. Но можно научиться самим составлять…

Фосфор – химический элемент, имеющий 15-й порядковый номер в Таблице Менделеева. Он расположен в ее V группе. Классический неметалл, открытый алхимиком Брандом в 1669-м году. Существует три основных модификации фосфора: красный (входящий в состав…

Химическая формула – это запись, сделанная с использованием общепринятых символов, которая характеризует состав молекулы какого-либо вещества. Например, формула всем известной серной кислоты – H2SO4. Легко можно увидеть, что каждая молекула серной…

Валентность - это способность химических элементов удерживать определенное количество атомов других элементов. В то же самое время, это число связей, образуемое данным атомом с другими атомами. Определить валентность достаточно просто. Инструкция …

Химия для каждого школьника начинается с таблицы Менделеева и фундаментальных законов. И уже только потом, уяснив для себя, что же изучает эта сложная наука, можно приступать к составлению химических формул. Для грамотной записи соединения нужно…

Оксиды – это сложные химические вещества, которые состоят из двух элементов. Одним из них является кислород. Оксиды в большинстве случаев бывают кислотными и основными. Как легко понять из названия, кислотные оксиды реагируют с основаниями, образуя…

Валентность химического элемента - это способность атома присоединять или замещать определенное число других атомов или атомных групп с образованием химической связи. Нужно помнить, что некоторые атомы одного и того же химического элемента могут…

В уроке 13 «» из курса «Химия для чайников » рассмотрим для чего нужны химические уравнения; научимся уравнивать химические реакции, путем правильной расстановки коэффициентов. Данный урок потребует от вас знания химических основ из прошлых уроков. Обязательно прочитайте об элементном анализе, где подробно рассмотрены эмпирические формулы и анализ химических веществ.

В результате реакции горения метана CH 4 в кислороде O 2 образуются диоксид углерода CO 2 и вода H 2 O. Эта реакция может быть описана химическим уравнением :

  • CH 4 + O 2 → CO 2 + H 2 O (1)

Попробуем извлечь из химического уравнения больше сведений, чем просто указание продуктов и реагентов реакции. Химичекое уравнение (1) является НЕполным и потому не дает никаких сведений о том, сколько молекул O 2 расходуется в расчете на 1 молекулу CH 4 и сколько молекул CO 2 и H2 O получается в результате. Но если записать перед соответствующими молекулярными формулами численные коэффициенты, которые укажут сколько молекул каждого сорта принимает участие в реакции, то мы получим полное химическое уравнение реакции.

Для того, чтобы завершить составление химического уравнения (1), нужно помнить одно простое правило: в левой и правой частях уравнения должно присутствовать одинаковое число атомов каждого сорта, поскольку в ходе химической реакции не возникает новых атомов и не происходит уничтожение имевшихся. Данное правило основывается на законе сохранения массы, который мы рассмотрели в начале главы.

Нужно для того, чтобы из простого химического уравнения получить полное. Итак, перейдем к непосредственному уравниванию реакции (1): еще раз взгляните на химическое уравнение, в точности на атомы и молекулы в правой и левой части. Нетрудно заметить, что в реакции участвуют атомы трех сортов: углерод C, водород H и кислород O. Давайте подсчитаем и сравним количество атомов каждого сорта в правой и левой части химического уравнения.

Начнем с углерода. В левой части один атом С входит в состав молекулы CH 4 , а в правой части один атом С входит в состав CO 2 . Таким образом в левой и в правой части количество атомов углерода совпадает, поэтому его мы оставляем в покое. Но для наглядности поставим коэффициент 1 перед молекулами с углеродом, хоть это и не обязательно:

  • 1CH 4 + O 2 → 1CO 2 + H 2 O (2)

Затем переходим к подсчету атомов водорода H. В левой части присутствуют 4 атома H (в количественном смысле H 4 = 4H) в составе молекулы CH 4 , а в правой – всего 2 атома H в составе молекулы H 2 O, что в два раза меньше чем в левой части химического уравнения (2). Будем уравнивать! Для этого поставим коэффициент 2 перед молекулой H 2 O. Вот теперь у нас и в реагентах и в продуктах будет по 4 молекулы водорода H:

  • 1CH 4 + O 2 → 1CO 2 + 2H 2 O (3)

Обратите свое внимание, что коэффициент 2, который мы записали перед молекулой воды H 2 O для уравнивания водорода H, увеличивает в 2 раза все атомы, входящие в ее состав, т.е 2H 2 O означает 4H и 2O. Ладно, с этим вроде бы разобрались, осталось подсчитать и сравнить количество атомов кислорода O в химическом уравнении (3). Сразу бросается в глаза, что в левой части атомов O ровно в 2 раза меньше чем в правой. Теперь-то вы уже и сами умеете уравнивать химические уравнения, поэтому сразу запишу финальный результат:

  • 1CH 4 + 2O 2 → 1CO 2 + 2H 2 O или СH 4 + 2O 2 → CO 2 + 2H 2 O (4)

Как видите, уравнивание химических реакций не такая уж и мудреная штука, и важна здесь не химия, а математика. Уравнение (4) называется полным уравнением химической реакции, потому что в нем соблюдается закон сохранения массы, т.е. число атомов каждого сорта, вступающих в реакцию, точно совпадает с числом атомов данного сорта по завершении реакции. В каждой части этого полного химического уравнения содержится по 1 атому углерода, по 4 атома водорода и по 4 атома кислорода. Однако стоит понимать пару важных моментов: химическая реакция — это сложная последовательность отдельных промежуточных стадий, и потому нельзя к примеру истолковывать уравнение (4) в том смысле, что 1 молекула метана должна одновременно столкнуться с 2 молекулами кислорода. Процессы происходящие при образовании продуктов реакции гораздо сложнее. Второй момент: полное уравнение реакции ничего не говорит нам о ее молекулярном механизме, т.е о последовательности событий, которые происходят на молекулярном уровне при ее протекании.

Коэффициенты в уравнениях химических реакций

Еще один наглядный пример того, как правильно расставить коэффициенты в уравнениях химических реакций: Тринитротолуол (ТНТ) C 7 H 5 N 3 O 6 энергично соединяется с кислородом, образуя H 2 O, CO 2 и N 2 . Запишем уравнение реакции, которое будем уравнивать:

  • C 7 H 5 N 3 O 6 + O 2 → CO 2 + H 2 O + N 2 (5)

Проще составлять полное уравнение, исходя из двух молекул ТНТ, так как в левой части содержится нечетное число атомов водорода и азота, а в правой — четное:

  • 2C 7 H 5 N 3 O 6 + O 2 → CO 2 + H 2 O + N 2 (6)

Тогда ясно, что 14 атомов углерода, 10 атомов водорода и 6 атомов азота должны превратиться в 14 молекул диоксида углерода, 5 молекул воды и 3 молекулы азота:

  • 2C 7 H 5 N 3 O 6 + O 2 → 14CO 2 + 5H 2 O + 3N 2 (7)

Теперь в обеих частях содержится одинаковое число всех атомов, кроме кислорода. Из 33 атомов кислорода, имеющихся в правой части уравнения, 12 поставляются двумя исходными молекулами ТНТ, а остальные 21 должны быть поставлены 10,5 молекулами O 2 . Таким образом полное химическое уравнение будет иметь вид:

  • 2C 7 H 5 N 3 O 6 + 10,5O 2 → 14CO 2 + 5H 2 O + 3N 2 (8)

Можно умножить обе части на 2 и избавиться от нецелочисленного коэффициента 10,5:

  • 4C 7 H 5 N 3 O 6 + 21O 2 → 28CO 2 + 10H 2 O + 6N 2 (9)

Но этого можно и не делать, поскольку все коэффициенты уравнения не обязательно должны быть целочисленными. Правильнее даже составить уравнение, исходя из одной молекулы ТНТ:

  • C 7 H 5 N 3 O 6 + 5,25O 2 → 7CO 2 + 2,5H 2 O + 1,5N 2 (10)

Полное химическое уравнение (9) несет в себе много информации. Прежде всего оно указывает исходные вещества — реагенты , а также продукты реакции. Кроме того, оно показывает, что в ходе реакции индивидуально сохраняются все атомы каждого сорта. Если умножить обе части уравнения (9) на число Авогадро N A =6,022·10 23 , мы сможем утверждать, что 4 моля ТНТ реагируют с 21 молями O 2 с образованием 28 молей CO 2 , 10 молей H 2 O и 6 молей N 2 .

Есть еще одна фишка. При помощи таблицы Менделеева определяем молекулярные массы всех этих веществ:

  • C 7 H 5 N 3 O 6 = 227,13 г/моль
  • O2 = 31,999 г/моль
  • CO2 = 44,010 г/моль
  • H2 O = 18,015 г/моль
  • N2 = 28,013 г/моль

Теперь уравнение 9 укажет еще, что 4·227,13 г = 908,52 г ТНТ требуют для осуществления полной реакции 21·31,999 г = 671,98 г кислорода и в результате образуется 28·44,010 г = 1232,3 г CO 2 , 10·18,015 г = 180,15 г H 2 O и 6·28,013 г = 168,08 г N 2 . Проверим, выполняется ли в этой реакции закон сохранения массы:

Реагенты Продукты
908,52 г ТНТ 1232,3 г CO2
671,98 г CO2 180,15 г H2 O
168,08 г N2
Итого 1580,5 г 1580,5 г

Но необязательно в химической реакции должны участвовать индивидуальные молекулы. Например, реакция известняка CaCO3 и соляной кислоты HCl, с образованием водного раствора хлорида кальция CaCl2 и диоксида углерода CO2 :

  • CaCO 3 + 2HCl → CaCl 2 + CO 2 + H 2 O (11)

Химическое уравнение (11) описывает реакцию карбоната кальция CaCO 3 (известняка) и хлористоводородной кислоты HCl с образованием водного раствора хлорида кальция CaCl 2 и диоксида углерода CO 2 . Это уравнение полное, так как число атомов каждого сорта в его левой и правой частях одинаково.

Смысл этого уравнения на макроскопическом (молярном) уровне таков: 1 моль или 100,09 г CaCO 3 требует для осуществления полной реакции 2 моля или 72,92 г HCl, в результате чего получается по 1 молю CaCl 2 (110,99 г/моль), CO 2 (44,01 г/моль) и H 2 O (18,02 г/моль). По этим численным данным нетрудно убедиться, что в данной реакции выполняется закон сохранения массы.

Интерпретация уравнения (11) на микроскопическом (молекулярном) уровне не столь очевидна, поскольку карбонат кальция представляет собой соль, а не молекулярное соединение, а потому нельзя понимать химическое уравнение (11) в том смысле, что 1 молекула карбоната кальция CaCO 3 реагирует с 2 молекулами HCl. Тем более молекула HCl в растворе вообще диссоциирует (распадается) на ионы H + и Cl — . Таким образом более правильным описанием того, что происходит в этой реакции на молекулярном уровне, дает уравнение:

  • CaCO 3 (тв.) + 2H + (водн.) → Ca 2+ (водн.) + CO 2 (г.) + H 2 O(ж.) (12)

Здесь в скобках сокращенно указано физическое состояние каждого сорта частиц (тв. — твердое, водн. — гидратированный ион в водном растворе, г. — газ, ж. — жидкость).

Уравнение (12) показывает, что твердый CaCO 3 реагирует с двумя гидратированными ионами H + , образуя при этом положительный ион Ca 2+ , CO 2 и H 2 O. Уравнение (12) как и другие полные химические уравнения не дает представления о молекулярном механизме реакции и менее удобно для подсчета количества веществ, однако, оно дает лучшее описание происходящего на микроскопическом уровне.

Закрепите полученные знания о составлении химических уравнений, самостоятельно разобрав пример с решением:

Надеюсь из урока 13 «Составление химических уравнений » вы узнали для себя что-то новое. Если у вас возникли вопросы, пишите их в комментарии.

Составление химических формул для соединений двух химических элементов в тех случаях, когда для каждого элемента существует только одна стехиометрическая валентность.

Алгоритм действия

Составление химической формулы оксида алюминия

Установление (по названию соединения) химических символов элементов

Определение валентности атомов элементов

Указание числового отношения атомов в соединении

Составление формулы

Аl 2 О 3

Составление химических формул для соединений, которые существуют в водном растворе в виде ионов.

Алгоритм действия

Составление химической формулы сульфата алюминия

Установление (по названию соединения) химических формул ионов

Определение числа зарядов ионов

Вычисление наименьшего общего кратного

Определение дополнительных множителей

Указание числового отношения ионов

Указание стехиометрических индексов

Составление формулы

Аl 2 (SО 4 ) 3

Написание химических формул

Для указания в химических формулах стехиометрических индексов и зарядов ионов существуют следующие правила.

1. Если стехиометрический индекс относится к группе атомов, обозначающие эту группу химические символы ставятся в скобки:

С 3 Н 5 (ОН) 3 – в молекуле глицерина содержатся 3 гидроксигруппы;

Ca(NО 3) 2 – в формульной единице нитрата кальция содержатся ионы кальция и нитрат-ионы в соотношении 1: 2.

2. Данные о заряде сложного многоатомного иона в химической формуле относятся ко всему иону:

SО 4 2– – сульфат-ион – имеет двухкратный отрицательный заряд;

NН 4 + – ион аммония – имеет одинарный положительный заряд.

3. Химическая формула комплексного иона ставится в квадратные скобки, за которыми указывается его заряд; она состоит из:

– химического символа центрального атома;

– химической формулы лиганда в круглых скобках;

– нижнего индекса, указывающего число лигандов.

4– – гексацианоферрат(II)-ион; в имеющем четыре отрицательных заряда ионе шесть лигандов СN – (цианид-ион) связаны с центральным атомом Fе II (катион железа Fe 2+).

2+ – ион тетраамминмеди (II); в имеющем два положи-тельных заряда ионе четыре лиганда NH 3 (молекула аммиака) связаны с центральным атомом меди (ион Сu 2+).

4. Химическая формула воды в гидратах и кристаллогидратах отделяется точкой от химической формулы основного вещества.

CuSO 4 · 5H 2 O – пентагидрат сульфата меди (II) (медный купорос).

Классификация неорганических веществ и их свойства

Все неорганические вещества делятся на простые и слож­ные.

Простые вещества подразделяются на металлы, неме­таллы и инертные газы.

Важнейшими классами сложных неорганических ве­ществ являются: оксиды, основания, кислоты, амфотерные гидрооксиды, соли.

Оксиды - это соединения двух элементов, один из ко­торых кислород. Общая формула оксидов:

Э m O n

где m – число атомов элемента Э;

n – число атомов кисло­рода.

Примеры оксидов: К 2 О, CaO, SO 2 , P 2 O 5

Основания – это сложные вещества, молекулы которых состоят из атома металла и одной или нескольких гидроксидных групп – ОН. Общая формула оснований:

Me (ОН) y

где учисло гидроксидных групп, равное валентности металла (Me).

Примеры оснований: NaOH, Ca(OH) 2 , Со(ОН) 3

Кислоты - это сложные вещества, содержащие атомы водорода, которые могут замещаться атомами металла.

Общая формула кислот

Н х Ас у

где Ас – кислотный остаток (от англ., acid кислота);

хчисло атомов водорода, равное валентности кислотного ос­татка.

Примеры кислот: НС1, HNO 3 , H 2 SO 4 , H 3 PO 4

Амфотерные гидроксиды – это сложные вещества, ко­торые имеют свойства кислот и свойства оснований. По­этому формулы амфотерных гидроксидов можно записы­вать в форме оснований и в форме кислот. Примеры амфотерных гидроксидов:

Zn(OH) 2 = H 2 ZnO 2

Al(OH) 3 = H 3 AlO 3

форма форма

оснований кислот

Соли – это сложные вещества, которые являются про­дуктами замещения атомов водорода в молекулах кислот атомами металла или продуктами замещения гидроксидных групп в молекулах оснований кислотными остатками. На­пример:

Состав нормальных солей выражается общей формулой:

Ме х (Ас) у

где х - число атомов металла; у - число кислотных остат­ков.

Примеры солей: K 3 PO 4 ; Mg SO 4 ; Al 2 (SO) 3 ; FeCl 3.

Оксиды

Например: СО – оксид углерода (II) – (читается: "ок­сид углерода два"); СО 2 – оксид углерода (IV); Fe 2 O 3 – оксид железа (III).

Если элемент имеет постоянную валентность, ее в назва­нии оксида не указывают. Например: Nа 2 О – оксид на­трия; Аl 2 О 3 – оксид алюминия.

Классификация

Все оксиды делятся на солеобразующие и несолеобразующие (или индифферентные).

Несолеобразующие (индифферентные) оксиды - это ок­сиды, которые не образуют солей при взаимодействии с кислотами и основаниями. Их немного. Запомните четыре несолеобразующих оксида: СО, SiO, N 2 O, NO.

Солеобразующие оксиды - это оксиды, которые образу­ют соли при взаимодействии с кислотами или основания­ми. Например:

Na 2 O + 2НС1 = 2NaCl + Н 2 О

оксид кислота соль

Некоторые оксиды с водой не взаимодействуют, но им соответствуют гидроксиды, которые можно получить кос­венным (непрямым) путем. В зависимости от характера соответствующих гидроксидов все солеобразующие оксиды делятся на три типа: ос­новные, кислотные, амфотерные.

Основные оксиды - это оксиды, гидраты которых явля­ются основаниями. Например:

В уроке рассматривается алгоритм составления химических формул веществ по известным валентностям химических элементов. Учитель объяснит два разных способа вывода химической формулы вещества.

2. определим число общих единиц валентности, оно равно наименьшему общему кратному валентностей элементов: НОК (2,4)= 4;

3. определим число атомов каждого химического элемента в молекуле, разделив число общих единиц валентности на валентность элемента;

4. запишем формулу вещества: SO 2 .

Пример 2 . Составим формулу вещества, образованного атомами фосфора (с валентностью V) и атомами кислорода.

1. Запишем знаки элементов и над ними укажем их валентности: .

2. Найдем число общих единиц валентности: НОК(2,5)=10

3. Найдем число атомов фосфора в молекуле: 10:5=2.

4. Найдем число атомов кислорода в молекуле: 10:2=5.

5. Запишем формулу вещества: .

Рис. 2. Составление химической формулы оксида фосфора

1. Емельянова Е.О., Иодко А.Г. Организация познавательной деятельности учащихся на уроках химии в 8-9 классах. Опорные конспекты с практическими заданиями, тестами: Часть I. - М.: Школьная Пресса, 2002. (с.33)

2. Ушакова О.В. Рабочая тетрадь по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006. (с. 36-38)

3. Химия: 8-й класс: учеб. для общеобр. учреждений / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005.(§16)

4. Химия: неорг. химия: учеб. для 8 кл. общеобразоват. учреждений / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, ОАО «Московские учебники», 2009. (§§11,12)

5. Энциклопедия для детей. Том 17. Химия / Глав. ред.В.А. Володин, вед. науч. ред. И. Леенсон. - М.: Аванта+, 2003.

Дополнительные веб-ресурсы

1. Единая коллекция цифровых образовательных ресурсов ().

2. Электронная версия журнала «Химия и жизнь» ().

Домашнее задание

1. с.84 №№ 3,4 из учебника «Химия: 8-й класс» (П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005).

2. с. 38 № 9 из Рабочей тетради по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006.