Полиэтиленовые трубы        17.06.2019   

Система бесперебойного и гарантированного электроснабжения (сбгэ). POWERSUITE - создавая лучшее Регламент обслуживания. Гарантийные обязательства

Работа большинства современных организаций строится на использовании техники, чувствительной к качеству энергии. Выход из строя компьютеров, банковской и медицинской аппаратуры, системы автоматики и других приборов влечет за собой серьезные последствия, которые порой могут быть непоправимы. Существующая система питания несовершенна, и процесс снабжения может внезапно прерваться. Чтобы этго не произошло, рекомендуется применение:

  • систем бесперебойного электропитания (СБЭ), работа которых базируется на базе источников бесперебойного питания (ИБП, UPS);
  • систем гарантированного электропитания (СГЭ), работа которых базируется на дизельгенераторных электростанций (ДЭС, ДГУ);
  • систем бесперебойного и гарантированного электропитания, как сочетание двух вышеперечисленных систем.

Как правило, задача обеспечить бесперебойное питание возлагается на ИБП и дизельные генераторы, которые берут на себя питание ответственного потребителя на период отсутствия электричества в сети. Тем не менее, в данном случае играют роль и вспомогательные решения, среди которых может быть резервирование подвода силовых линий, системы тушения пожара и защиты от молнии. Важно понимать, что гарантированное электропитание должно быть обеспечено в условиях любых экстремальных ситуаций.

Ключевыми характеристика систем бесперебойного питания являются надежность, отказоустойчивость, энергоэффективность. Тем не менее, экономия электроэнергии, увеличение сроков эксплуатации аккумуляторов и увеличение КПД аппаратуры служат лишь частью решения задачи. К прочим значимым направлениям можно отнести разработку мощных аккумуляторных батарей и применение кинетических накопителей.

Экономия используемых ресурсов

Мир все больше внимания уделяет разработке и применению альтернативных источников электроэнергии, которые могли бы возобновляться сами по себе. Это особенно важно благодаря «зеленым тарифам», которые позволяют реализовывать излишек получаемой электроэнергии в сеть общественного использования, либо расходовать полученную энергию на личные нужды, понижая зависимость от внешних источников.

Дополнительной возможностью сэкономить энергоресурсы и увеличение эффективности бизнеса, служит подробный мониторинг затрат энергии и автоматизация процессов, связанных с этими расходами. Помочь в данном направлении могут особые технологии, именуемые «Интернет вещей» (IoT). Именно благодаря им оборудование стало работать на более «умной» автоматизации, да и сбор информации вышел на принципиально новый уровень.

Необходимость СГП в России

В России не только остро стоит вопрос электроснабжения, однако и наблюдаются проблемы с качеством электричества, которую поставляют потребителям по распределительным сетям общего назначения. Поэтому возникла необходимость в создании СГП - системы гарантированного питания. Она применяется в схеме релейной защиты, автоматики и технологической сигнализации электроустановок разного класса напряжения предприятий энергетики и других важных объектов.

СГП обеспечивает непрерывное питание ~ 220В:

  • от централизованной сети переменного тока ~220В в штатном режиме,
  • от резервной сети постоянного тока =220В при отключении напряжения в сети переменного тока, используя резерв аккумуляторов пользователя,
  • от ресурса батарей источника бесперебойного питания в отсутствие напряжений, как в сети переменного тока, так и в сети постоянного тока.

Преимущества СГП:

  • Стабильность параметров сети ~220В при подключении =220В с нулевым временем переключения в аварийный режим без возникновения переходного процесса на выходе устройства.
  • Пользователь может самостоятельно подключить СГП, поскольку ее конструкция проста и понятна.
  • При аварийных отключениях сохраняются регламентные требования.
  • Напряжение сети постоянного тока =220В в СГП производится тремя однотипными каналами, обеспечивая трехкратный запас надежности, если при аварии отказывает один канал, СГП сохраняет свою работоспособность.
  • Преобразователь напряжения работает в экономном режиме.
  • Эксплуатация практичная и долговечная.

Конструкция СГП предполагает применение унифицированных элементов: источника бесперебойного питания, блока питания постоянного напряжения (преобразователь постоянного напряжения), реле переменного тока. Если что-либо выходит из строя, деталь легко можно заменить аналогичной. При необходимости можно обратиться в сервисную службу, однако устройство целиком предназначено для самостоятельной эксплуатации.

Современное оборудование (компьютеры, активное оборудование вычислительных сетей, телекоммуникационная аппаратура, банковская и медицинская техника, системы автоматики на предприятиях) является чувствительным к качеству электроэнергии и его подключение к существующей системе электропитания связано с повышенным риском нарушения его рабочего режима, а в ряде случаев – с риском выхода из строя. Чтобы обеспечить непрерывность процессов, можно использовать:

  • системы бесперебойного электропитания (СБЭ) на базе источников бесперебойного питания (ИБП, UPS)
  • системы гарантированного электропитания (СГЭ) на базе дизельгенераторных электростанций (ДЭС, ДГУ)
  • системы бесперебойного и гарантированного электропитания, как сочетание СГЭ и СБЭ
В текущих условиях вопрос надёжности электроснабжения усугубляется проблемами, связанными с качеством электроэнергии, поставляемой потребителям по распределительным сетям общего назначения.

По мере развития информационных технологий возникла необходимость в выработки общих решений и принципов организации электроснабжения ЦОД.

Одним из важных аспектов развития современного общества являются информационные технологии. Для создания высокопроизводительной, отказоустойчивой информационной инфраструктуры в настоящее время применяются комплексные централизованные системы – центры обработки данных (ЦОД). В работе ЦОД, помимо собственно систем обработки и хранения данных, определяющую роль играют инженерные системы, обеспечивающие его нормальное функционирование, в том числе система электроснабжения.

Для регламентирования инженерной составляющей ЦОД в России рядом крупных организаций, прежде всего банков, были разработаны собственные ведомственные нормы проектирования, где частично рассмотрен вопрос о электроснабжении ЦОД - в частности: «ВНП 001-01/ Банк России «Здания учреждений ЦБ РФ»; «0032520.09.01.01.03.ЕТ.01.01/ ОАО Банк ВТБ «Единые требования по обеспечению подразделений ОАО Банк ВТБ бесперебойным электроснабжением средств связи и вычислительной техники», ОАО Сбербанк России «Методика построения систем энергоснабжения объектов Сбербанка России N°979-р» др.

В апреле 2005 г. Ассоциация изготовителей оборудования для передачи данных выпустила TIA-942 - первый стандарт на телекоммуникационную инфраструктуру центров обработки данных (Telecommunications Infrastructure Standards for Data Centres), в котором выдвинуты и систематизированы требования к инфраструктуре ЦОД.

Предназначенный для использования проектировщиками ЦОД на ранней стадии строительства и оборудования здания, стандарт TIA-942 регламентирует:

  • требования к месту расположения дата-центра и его структуре;
  • требования к архитектурно-строительным решениям;
  • требования к кабельным сетям;
  • требования к надежности;
  • требования к параметрам рабочей среды.


В соответствии с TIA-942 все ЦОДы разделены на 4 уровня по степени резервирования инфраструктуры (надежности):

Уровень 1 – базовый. Резервирование отсутствует, для плановых и ремонтных работ необходимо отключение всей системы.
Уровень 2 – с резервированием. Резервирование реализовано по схеме «N+1», однако для технического обслуживания необходимо отключение системы.
Уровень 3 – с возможностью параллельного проведения ремонтов. Позволяет осуществлять плановую деятельность без нарушения работоспособности объекта, однако при отказе некоторых элементов системы, возможны перерывы в нормальном ходе работы.
Уровень 4 – отказоустойчивый. Предусматривает возможность проведения любой плановой деятельности, а также обеспечивает возможность выдержать по крайней мере один отказ без последствий для критически важной нагрузки. Это означает наличие двух отдельных систем бесперебойного электропитания, каждая из которых имеет резервирование «N+1».

Проектная документация в pdf

ЭЛЕКТРОТЕХНИЧЕСКАЯ ЧАСТЬ

1.1. Главная схема

Главная схема электростанции обеспечивает выдачу 100% расчетной рабочей мощности во всех режимах работы рыбоперерабатывающего комплекса и может иметь в наличии резервную генераторную мощность.

Согласно данных потребляемых электрических нагрузок, максимальная рабочая потребляемая мощность составляет 2019 кВт. Установленная генераторная мощность 3-х ДГУ составляет 2,44 МВт, что обеспечивает резерв мощности. Группа ДГУ всегда имеет возможность включения в работу дизельной станции SDMO X1250 мощностью 1000 кВт или SDMO V550 C2 440 кВт.

Распредустройство системы гарантированного электроснабжения (СГЭ) выполнено в виде 3-х шкафов, подключенных к 3-м секциям ВРУ. Шкафы с выключателями в нормальном режиме отключены. При пропадании напряжения на определенной секции ВРУ и отсутствии его в течении определенного времени, соответствующий генератор запускается и подключается к шинам секции с одновременным отключением основного ввода данной секции.

Распредустройства, шинопроводы и силовые кабели выбраны в соответствии с максимальными токами короткого замыкания по термической и электродинамической стойкости.

Коммутационная аппаратура соответствует токам КЗ по отключающей способности.

Управление генераторами и выключателями СГЭ местное на панелях управления генераторов. С главного щита управления завода в диспетчерской обеспечен контроль состояния выключателей и нормального или аварийного состояния генераторов.




1.2. Система электроснабжения.

Группа ДГУ, установленной мощностью 2,44 МВт, предназначена для работы в аварийном режиме (отсутствием напряжения на основном вводе ВРУ) и проектируется на базе 2-х дизельных генераторов по 1250 кВА типа X1250 и 1-го генератора 550 кВА типа V550 C2 фирмы SDMO.

3 генератора G-1, G-2 и G-3 подключаются на 3 секционные шины распределительного устройства ВРУ завода.

Автоматическое включение генераторов G-1, G-2 и G-3 обеспечивается при помощи панели управления типа MICS Kerys фирмы SDMO. Генераторы оборудованы штатными наборами защит.

Распределительные устройства ввода проектируются на основе шкафов, аппаратов и шинопроводов фирмы Schneider Electric, устанавливаемых в резервном помещении (29) см. «План расположения оборудования и кабельных трасс». Все электротехническое оборудование, которое может оказаться под напряжением при нарушении изоляции, присоединяется к заземлению системы ГЭ, соединенного в свою очередь с заземляющим устройством ВРУ завода.

1.3. Оборудование электростанции

В состав системы гарантированного электроснабжения (СГЭ) входят:

2 дизельные генераторные установки X1250 фирмы SDMO мощностью 1000 кВт каждая в контейнерном исполнении;

Дизельная установка V550 фирмы SDMO мощностью 440 кВт в защитном кожухе;

Систему ввода (подключения) гарантированного электроснабжения;

Система снабжения СГЭ дизтопливом;

Собственных нужд СГЭ (шкаф СНГП).

Режим работы дизельных станций - пиковый.

Система ГЭ представляет собой функциональный комплекс, включающий кроме дизельных агрегатов, необходимые системы ввода ГЭ, автоматики, контроля и управления.

Суммарная электрическая мощность системы СГЭ -3050 кВА. Род тока - переменный, 3-х фазный, частота 50 Гц. Номинальное напряжение - 0,4 кВ. Распределительные устройства ввода резерва рассчитаны на коммутацию и передачу трехфазного переменного тока напряжением 0,4 кВ и 4800 А суммарного тока.

Группа из 3-х ДГУ предназначена для работы в автономном режиме. В комплекс каждой ДГУ входит собственное распределительное устройство 0,4 кВ для ввода (подключения) генераторов G-1 ÷ G-3 к секциям ВРУ.

На каждой дизельной станции установлены пульты управления MICS Kerys. Автоматизированная система управления (пульт управления MICS Kerys) обеспечивает режим работы с выработкой электроэнергии по нагрузке (в пределах номинальной мощности генераторов).

На выходе генераторов установлен блок коммутации типа AIPR, (для дизельных станций X1250 в комплекте с ДГУ для (существующей) ДГУ V550 C2 отдельно заказывается блок AIPR 1250 А.

1.4. Электроснабжение собственных нужд СГЭ.

Питание потребителей собственных нужд СГЭ - от ВРУ предусматривается по I категории надежности. Шкаф собственных нужд СГЭ СНГП имеет два независимых ввода с разных секций ВРУ завода и автоматический ввод резерва на вводе.

На отходящих фидерах СНГП предусматривается установка автоматических выключателей для защиты от токов КЗ и токов перегрузки. Кабельные трассы от СНГП предполагается выполнить открыто в стальном лотке на кабельных полках и в стальных трубах при вводе в ДГУ и проходе в стенах.

1.5. Заземление системы гарантированного электроснабжения.

В качестве заземлителя СГЭ проектируется создание заземляющего устройства, состоящего из вертикальных электродов стального уголка l=3м, соединенных между собой стальной полосой 50х5 мм, присоединяемого к заземляющему устройству ВРУ завода.

Сопротивление совмещенного заземляющего устройства - не более 4 Ом. Проектом предусматривается система заземления TN-C-S.

В резервном помещении шкафов ввода гарантированного питания сооружается внутренний контур заземления, который соединяется с заземляющим устройством и с металлическими корпусами шкафов ввода ГЭ. В этом помещении происходит разделение проводника PEN на PE и N. Соединение шкафов ввода ГЭ с ВРУ завода осуществляется 5-ти проводными шинопроводами с разделенными PE и N.

АВТОМАТИЗАЦИЯ

В настоящем комплекте проектной документации разработаны следующие системы автоматики и управления:

Система контроля напряжения на основных вводах секций ВРУ и автоматического запуска и подключения ДГУ к соответствующим секциям;

Система автоматической подачи топлива из резервной емкости в баки генераторов в зависимости от их наполнения.

Систем автоматического запуска и подключения ДГУ выполнена на базе пульта управления MICS Kerys, входящего в комплект поставки (для существующего G-3 заказывается отдельно).

Система автоматической подачи топлива управляется специальным контроллером для групп насосов типа САУ-МП в зависимости от положения датчиков уровня в топливных баках ДГУ.

Контроль работы SDMO V550 C2 и SDMO X1250 осуществляется путем подключения штатных панелей управления агрегатов к кабельной сети и передачи основных «состояний» систем в диспетчерскую.

Рабочее место оператора размещено в диспетчерской завода пом.29 см. «План расположения оборудования и кабельных трасс».

При выходе значений контролируемых параметров дизельных станций за пределы заданных уставок, автоматика станции (MICS Kerys) формирует событие «Авария» и передает его в диспетчерскую по кабельному каналу.

Питание контроллеров (панелей MICS Kerys) выполняется от собственных нужд дизельной станции, а выше от шкафа СНГП.

В условиях нестабильного электроснабжения часто имеет смысл подстраховаться и оградить себя от неприятных сюрпризов, которые могут преподнести централизованные электросети.

Например, нередко можно наблюдать, как напряжение в сети падает или скачет. Нагляднее всего это можно заметить, обратив внимание на то, как светится обычная лампа накаливания - если она мерцает или горит вполнакала, значит, в вашей электросети возникла проблема. Недостаточный уровень напряжения или его перепады могут вызвать сбои в работе чувствительного оборудования, потерю компьютерных данных и другие неприятные последствия.

Также возможны резкие повышения напряжения, которые чаще всего вызваны короткими замыканиями или попаданием разряда молнии в провода или подстанцию. Несмотря на принимаемые меры по защите от грозы, такие случаи время от времени случаются и кроме сбоев в работе могут повлечь выход оборудования из строя.

Кроме перечисленных нарушений работы сети возможно и полное исчезновение напряжения - кратковременное или довольно долгое. В итоге парализуется производство, перестают работать различные системы - связи, охранные, обеспечения жизнедеятельности и прочие.

Поэтому в ряде случаев требуется принимать дополнительные меры и устанавливать оборудование, которое позволит свести к минимуму негативные последствия отказов централизованной электросети.

Различают два вида таких систем - системы бесперебойного электропитания и системы гарантированного электропитания. Ниже рассмотрим, чем они отличаются.

Различия систем бесперебойного и гарантированного электроснабжения

Система бесперебойного электроснабжения чаще всего подразумевает наличие источников бесперебойного питания (ИБП), которые при необходимости переключают запитанное от них оборудование на работу от аккумулятора. В штатном режиме работы электросети батареи ИБП заряжаются. Также ИБП оснащены сетевыми фильтрами, которые помогают отсекать высокочастотные помехи в электросети, перепады напряжения и прочее.

Такая мера эффективна, если у вас в сети наблюдаются кратковременные отключения или перепады напряжения - с такими неприятностями ИБП вполне эффективно справляются. Однако для того, чтобы поддерживать работу аппаратуры или оргтехники при длительном отключении, ресурсов бесперебойников недостаточно. Всё, что они смогут сделать в аварийной ситуации - дадут пользователям несколько минут на то, чтобы штатно выключить оргтехнику и сохранить необходимые данные.

Чтобы противостоять продолжительным отключениям электричества, требуются системы гарантированного электропитания, или сокращённо - СГЭ. Кроме источников бесперебойного питания подобная безопасная система предполагает наличие дизель-генераторной установки (сокращённо - ДГУ), выполняющей во время длительного отключения центральной электросети роль блока аварийного электроснабжения, и необходимого оборудования контроля и управления, которое даёт возможность ИБП и ДГУ взаимодействовать в комплексе.

Проектирование и установка бесперебойного питания оправданы в том случае, если часто наблюдаются выключения электричества, и на вашем объекте имеются потребители, для которых критичным считается бесперебойность и высокое качество электроснабжения.

При таких условиях убытки от сбоев в деятельности электросети могут оказаться столь значительными, что многократно превысят стоимость закупки и установки специального оборудования, также следует озаботиться установкой такой схемы подключения на стратегических объектах или же в том случае, когда отключение напряжения может повлечь человеческие жертвы.

Цель создания СГЭ и требования к ней

Итак, с целью создания на каком-либо объекте системы гарантированного электропитания всё ясно - такая система должна гарантировать стабильное высококачественное электроснабжение для ответственных потребителей энергии при некорректной работе централизованных электросетей. Результатом создания на объекте подобной системы является обеспечение нормальной работы оборудования при аварийной работе центрального электроснабжения.

При оснащении объекта системами гарантированного электропитания выделяют основные группы особо ответственных потребителей энергии, которые нуждаются в подсоединении к защищённой электросети.

Прежде всего, сюда относят сетевое оборудование, из которого состоит локальная компьютерная сеть - сервера, роутеры, персональные компьютеры и т.д. Также нуждается в безопасном подключении оборудование связи (в частности, АТС), системы обеспечения жизнедеятельности (вентиляция и системы кондиционирования), различное медицинское оборудование, от которого зависит здоровье и жизнь пациентов.

Охранные системы и системы безопасности (видеонаблюдение, охранная и пожарная сигнализация, система аварийного освещения и пожаротушения и прочие), тоже вполне оправдывают подключение к защищённой сети электропитания, так как последствия отказа таких систем могут быть довольно серьёзными.

Что касается требований, которые предъявляются к работе систем гарантированного электроснабжения, главными тут являются стабильное и бесперебойное электропитание всех запитанных от системы потребителей, максимальная защита от перепадов напряжения и высокая точность параметров выходного тока в плане соответствия существующим стандартам.

Также при проектировании и создании системы гарантированного электропитания важно учитывать удобство и эффективность пользования, для чего современные СГЭ имеют высокую степень автоматизации работы.

Так, необходимым условием для такой системы является оперативное реагирование на причуды электросети и автоматический перевод потребителей на работу от защищённой сети. При нормализации параметров центрального электроснабжения система также автоматически отключается.

Кроме того, важным является возможность удалённого администрирования системы в случае необходимости и наличия в ней средств информирования администратора о возникших проблемах.

Структура и принцип действия СГЭ

Поскольку каждый объект имеет свои особенности, конфигурация системы гарантированного электропитания в каждом случае разрабатывается под конкретные условия.

Однако, несмотря на то, что достаточно часто при разработке СГЭ приходится прибегать к нестандартным решениям, схематично такие системы обычно выглядят похожими.

Основными блоками системы, прежде всего, являются автономный источник энергии (обычно это дизель-генератор), один или несколько источников бесперебойного питания (ИБП), а также электропитающие установки постоянного тока. Также подобное безопасное и надёжное решение подразумевает использование средств контроля системы и её управления и специального программного обеспечения.

При нормальной работе централизованной сети питания дизель-генераторная установка пребывает в режиме ожидания, а электроснабжение подключенного оборудования производится через бесперебойники. Сами ИБП в этой ситуации также заряжают свои батареи, выполняя роль сетевого фильтра.

При возникновении в электрической сети сбоя контроллер системы запускает дизель-генератор, пока это происходит, работа подключенного оборудования осуществляется от ИБП. После того, как ДГУ вышла на заданные обороты, нагрузка переключается на неё, аккумуляторы ИБП при этом вновь подзаряжаются от дизеля.

После того, как проблемы работы централизованной электросети устранены, контроллер переключает оборудование с питания от ДГУ на внешнюю сеть. Во время этого процесса питание потребителей также производится от ИБП. Глушение дизельного двигателя установки тоже производится автоматически, после того, как оборудование перешло на штатное электропитание.

Время автономной работы потребителей от системы гарантированного электропитания зависит ресурса работы ДГУ (объём топлива в баке и его расход) и ёмкости батарей ИБП. Если ресурс топлива почти исчерпан, а централизованное электропитание не восстановилось, оператор должен принять решение о завершении работы потребителей или продолжать её до полного истощения ресурсов ДГУ и источника бесперебойного питания.

В заключение - несколько советов относительно того, чем следует руководствоваться при выборе производителя оборудования для оборудования системы аварийного электроснабжения .

Основными требованиями являются гарантированное электропитание, его высокое качество и надёжность работы поставляемого оборудования, а также соответствие его отечественным стандартам. Руководствуясь этим параметром, важно выбирать в качестве поставщика серьёзные компании, имеющие вес и авторитет на отечественном рынке силового оборудования.

Такие фирмы, к тому же, смогут гарантировать вам квалифицированную техническую поддержку и обслуживание поставляемой техники. Наконец, при поставке оборудования могут иметь значение и такие факторы, как оперативность поставки и приемлемые, экономически обоснованные цены на продукцию.

Данная статья предназначена для практиков, которым приходится сталкиваться с проблемами обеспечения качественного электропитания систем безопасности.

Терминология и сокращения, которые будут применяться в данной статье:

  • АКБ — герметичная кислотная батарея с гелевым электролитом.
  • ГЕНЕРАТОР — дизельная или бензиновая электростанция, вырабатывающая переменное однофазное напряжение 220 В или трехфазное 380 В.
  • ИНВЕРТОР — устройство обеспечения бесперебойного электропитания, основанное на преобразовании постоянного тока от аккумуляторных батарей в переменное однофазное напряжение 220В или трехфазное 380В. Подразумевается, что
  • ИНВЕРТОР имеет в своем составе АКБ , необходимую для обеспечения требуемого времени работы на заданной мощности.
  • UPS — под этим сокращением будут подразумеваться «компьютерные бесперебойники» малой мощности.
  • ИБП — Источники бесперебойного питания (или ИВЭПР — источники вторичного электропитания резервированные).
    Подобные устройства предназначены для питания аппаратуры, которая не имеет своего встроенного сетевого блока питания. В состав ИБП входят АКБ .
  • ИРП — Источники резервного питания. Предназначены для обеспечения питания аппаратуры, которая имеет собственный основной источник питания и вход для дополнительного резервирования.

ВЫБОР СТРАТЕГИИ ОРГАНИЗАЦИИ ПИТАНИЯ

Прежде всего, следует разделить потребителей на группы по критичности электропитания и времени необходимого резервирования.


  • — Относительно невысокую стоимость — в среднем бензиновый генератор обойдется $400-500 за кВт, а дизельный примерно в 1,5 — 2 раза дороже;
  • Высокое качество выходного напряжения;
  • — Возможность длительного времени работы.

Недостатки:

  • — необходимо специальное помещение;
  • — необходимость обслуживания;
  • — невозможность обеспечить бесперебойное питания — требуется время для запуска генератора.

Дизельные генераторы дешевле в эксплуатации, поэтому их имеет смысл применять только для организации длительного резервного питания объектов большой мощности (более 5 кВт). На меньших мощностях или при кратковременном использовании бензиновый генератор будет более экономичен.

Покупать ГЕНЕРАТОРЫ имеет смысл только импортные и только в специализированных фирмах. В Россию завозят много неплохих марок японского (напр. Yamaha), французского (SDMO) и итальянского производства.

ИНВЕРТОР — так обычно называют преобразователь с низкого напряжения постоянного тока в высокое переменное. Другими словами — энергию АКБ в переменный ток 220 В. В чистом виде инверторы применяются редко, а являются составной частью систем бесперебойного питания, которые обычно называют UPS. UPS бывает двух типов — on-line и off-line. UPS off-line являются более дешевыми и простыми — инвертор включается только при пропадании сетевого напряжения. Схема on-line — это схема с двойным преобразованием. Сначала сетевое напряжение понижается и выпрямляется, после чего постоянной ток с помощью инвертора преобразуется в переменный 220 В. При пропадании сетевого напряжения используется энергия АКБ . Подобная схема дает наиболее качественное питание, так как не зависит от качества входного напряжения. Инверторы типа on-line являются одновременно и стабилизаторами напряжения, и фильтрами. Это идеальное решение для обеспечения питания потребителей 220 В. Но и стоят они существенно дороже обычных off-line приборов.

Еще одним важным параметром для ИНВЕРТОРОВ и UPS является форма выходного сигнала:

  • — чистый синус — наиболее сложные и дорогие приборы;
  • — аппроксимированный синус — промежуточный вариант, может быть разная степень аппроксимации;
  • — модифицированный синус, меандр, квазисинус — наиболее часто встречающийся и недорогой вариант инвертора.

Необходимо помнить, что некоторые типы нагрузок очень чувствительны к форме питающего напряжения. Модифицированный синус нельзя использовать для питания потребителей с трансформаторными источниками питания и для чувствительной аппаратуры.

Выходная мощность — для инверторов обычно указывается в Вольт-Амперах (ВА, VA). В отличии от Ваттов (Вт, W), которые указывают эффективную потребляемую мощность переменного тока, вольт-амперы характеризуют амплитудные значения токов и напряжений в нагрузке. Существование такой единицы связано с тем, что в цепях переменного тока может возникать сдвиг фаз.
Для простой активной нагрузки VA = 1,41 x W
Крайне аккуратно надо подключать нагрузку с мощностью, которая указана в Ваттах к источнику, мощность которого указана в ВА. Если такая необходимость возникает, то для расчетов умножить значение нагрузки в Ваттах на 1,41
Приобретение хорошего ИНВЕРТОРА большая проблема. Есть очень дорогие модели, предназначенные для телекоммуникационной и компьютерной техники.
Практически отсутствует на рынке «средний класс». Как правило, проблемы с сервисом, а ИНВЕРТОР — весьма дорогой и сложный прибор.
Есть неплохие отечественные приборы, но их производители — оборонные заводы — страдают слабым маркетингом. Купить же компьютерный UPS небольшой мощности проще простого.

НИЗКОВОЛЬТНЫЕ ИБП и ИРП

Практически все ИРП существующие на рынке похожи друг на друга и отличаются только емкостью устанавливаемых АКБ.
Поэтому основное внимание уделим ИБП. ИБП по своей схемотехнике можно разделить на трансформаторный и импульсные.
В свою очередь трансформаторные ИБП могут быть с линейным или ШИМ стабилизатором.
Импульсные ИБП для систем безопасности мало применяются ввиду невысокой надежности и высокого уровня помех.
Трансформаторные источники с линейным стабилизатором оптимальны при небольших токах.
При больших токах все чаще начинают применять ШИМ стабилизаторы, хотя линейные схемы до сих пор вне конкуренции по надежности и ремонтопригодности.

Один из важнейших параметров — НАПРЯЖЕНИЕ ПИТАНИЯ СЕТИ. В России стандарт на электросети допускают интервал напряжений 187…242В (220В -15% +10%).

Зарубежные требования более жесткие, поэтому импортные ИБП не рекомендуется использовать в наших сетях. Более того, некоторые отечественные ИБП выпускаются с параметрами, заявленными в диапазоне 220В ± 10%.
Использование таких ИБП в реальных сетях чревато либо хроническим недозарядом АКБ, либо срывом стабилизации, что совершенно недопустимо для систем безопасности. Т.к. во многих регионах пониженное напряжение в сети является нормальным состоянием, на рынке появились ИБП с расширенным диапазоном питающей сети порядка 150…250В.

Отсутствие четких стандартов на ИБП приводит к произволу в определениях и терминологии, что часто запутывает потребителя.
Необходимо помнить, что основным параметром ИБП, характеризующим его нагрузочную способность является НОМИНАЛЬНЫЙ ТОК ВЫХОДА — это ток, который может отдаваться в нагрузку при питании от сети ВСЕГДА независимо от обстоятельств, сколь угодно длительное время и при сохранении уровня пульсаций — при любом допустимом напряжении в сети в интервале не хуже 187…242 В, при любом состоянии АКБ, в допустимом рабочем интервале температур. Только на этот ток вы можете рассчитывать при построении системы.
Часто производители ИБП в качестве основного параметра указывают ток, отдаваемый в нагрузку без подключенной АКБ (иногда его называют максимальный ток),
но надо помнить, что часть этого тока отбирается для зарядки батареи, и в нагрузку гарантировано может отдаваться только номинальный ток.

Все профессиональные ИБП имеют защиту от глубокого разряда АКБ. Часто ИБП позволяют подключать дополнительные ИРП для увеличения времени работы в режиме резерва.
Многие ИБП имеют повышенные выходные токи в режиме резерва (при отсутствии сети) или кратковременно, что позволяет существенно оптимизировать питание систем ОПС, оповещения и пожаротушения.

Выбирать ИБП или ИРП следует только отечественного производства и только от производителей, специализирующихся на выпуске ИБП.
Уже стало поговоркой, что «только ленивый не делает блоки питания». Но реально в России есть не более 4-5 фирм, которые производят надежные и уже испытанные годами источники, обеспечивают широкий ассортимент и техническую поддержку и сеть дистрибьюции.