Для отопления        01.03.2019   

На какие группы делятся насосы. Вихревые и роторные конструкции. Канализационные насосные устройства

Классификация и области применения насосов

Насосы – это машины, в которых производится преобразование механической энергии привода в гидравлическую энергию перекачиваемой жидкости, в результате чего происходит ее перемещение.

В пищевых производствах насосы являются одними из самых распространенных видов оборудования, надежная работа которых обеспечивает непрерывность технологического процесса. Насосы используют для перекачивания жидкостей с разными физико-химическими свойствами (молочных продуктов, пасты, сыворотки, спирта и.т.п.) при различных температурах.

От параметров перекачиваемой жидкости во многом зависит тип и надежность работы насоса.

По принципу действия все насосы (рис. 2.23) делят на две большие группы – объемные, динамические, а также эрлифты и монтежю, в которых для перемещения жидкости используется энергия сжатого воздуха.

Объемные насосы. Для транспортировки жидкостей при высоких давлениях применяют объемные насосы. На рис. 2.24 показаны схемы объемных насосов. К объемным насосам с возвратно-поступательным движением рабочего органа относятся поршневые, плунжерные, диафрагменные. С вращательным движением рабочего органа - ротационные, одно-, двух- и трехвинтовые, шестеренчатые.

Принцип действия объемных насосов состоит в вытеснении некоторого количества жидкости из рабочего объема машины. Энергия жидкости в них повышается в результате увеличения давления. В объемных насосах подача (производительность) не зависит от напора. Подача пропорциональна скорости перемещения рабочего органа или числу циклов в единицу времени. Объемные насосы являются самовсасывающими в отличие от динамических насосов. Их используют для перекачивания высоковязких жидкостей, жидкостей с большим содержанием газов и плохо текучих продуктов.

Динамические насосы. В насосах этого типа энергия жидкости увеличивается благодаря взаимодействию лопаток рабочего колеса и перемещающегося потока. Под действием вращающихся лопаток жидкость приводится во вращательное и поступательное движение. При этом ее давление и скорость возрастают по мере движения в рабочем колесе.

В динамическом насосе увеличивается доля кинетической энергии в связи с увеличением скорости потока на выходе из рабочего колеса.

К динамическим насосам относятся вихревые, центробежные, диагональные, осевые насосы. Именно в таком порядке возрастают подачи насосов и уменьшаются создаваемые напоры.

Рис. 2.23. Классификация насосов

Рис. 2.24. Схемы конструкций объемных насосов:

а) плунжерный; б) диафрагменный; в) ротационный; г) шестеренчатый;

д) винтовой

Центробежные насосы . Принципиальная схема центробежного насоса приведена на рис. 2.25.

Центробежный насос (или ступень многоступенчатого насоса) состоит из подвода 1, рабочего колеса 2, ротора 3, отвода 4. Жидкость подается во входной патрубок насоса и затем в рабочее колесо, откуда под действием вращающихся лопаток нагнетается в отвод. Давление жидкости на выходе из отвода при этом становится больше, чем на входе за счет торможения потока и преобразования кинетической энергии в потенциальную энергию давления.

Рис. 2.25. Схема конструкции центробежного насоса

К достоинствам центробежных насосов можно отнести отсутствие пульсаций потока жидкости и высокую приспособляемость к различным условиям работы, благодаря применению соответствующих типов колес.

Недостатками центробежных насосов являются: ограниченный диапазон подач и напоров; низкий КПД при отклонении от номинальных режимов работы; снижение КПД с ростом вязкости перекачиваемой жидкости; зависимость подачи от противодавления и сопротивления системы; невозможность обеспечения работы с самовсасыванием жидкости в пусковой период без специальных устройств.

Вихревые насосы. Отличительная особенность этого типа насосов – вихревое движение жидкости (рис. 2.26). Многократное контактирование потока жидкости с рабочим колесом сопровождается повышенными потерями энергии, в результате чего КПД насосов не превышает 40 - 50%. Вихревые насосы в сравнении с центробежными могут удалять газы из всасывающей линии, т.е. перекачивать газожидкостные смеси, и обеспечивают самовсасывание в пусковой период.

Осевые насосы используют для создания больших подач при перекачивании загрязненной воды, вязких и мало- вязких продуктов, подпиточной и оборотной воды. По сравнению с центробежными осевые насосы (рис. 2.27) имеют большие подачи и меньшие напоры.

В пищевой промышленности широкое распространение получили, в основном, поршневые, плунжерные, ротационные и центробежные насосы.

Поршневые и плунжерные насосы отличаются более высокими КПД и создаваемыми давлениями, но ограничены производительностью.

Широкое применение для целей энергосбережения получили струйные насосы , которые успешно конкурируют с лопастными насосами при наличии сбросных высокопотенциальных потоков газа, пара и жидкостей.

Рис. 2.26. Схема конструкции вихревого насоса:

1 – корпус; 2 – рабочее колесо; 3 – лопатки; 4 – окно всасывания; 5 – нагнетательный патрубок; 6 – вал

Рис. 2.27. Схема конструкции осевого насоса:

1 – входной направляющий аппарат; 2 – корпус; 3 – рабочее колесо;

4 – диффузор

Параметры насосов

Работа насоса и насосной установки характеризуется рядом параметров, наиболее важными из которых являются:

Подача насоса . Различают объемную и массовую подачу насоса. Объемная (массовая `M ) подача - объем (масса) жидкости, подаваемой насосом в напорный патрубок в единицу времени. Объемная и массовая подачи связаны соотношением

где r - плотность жидкости.

Напор насоса - представляет собой энергию, сообщаемую насо­сом единице веса перемещаемой жидкости. Напор, в соответствии с уравнением Бернулли, равен разности полных напоров за насосом на линии нагнетания и на линии всасывания:

где p н и p вс - абсолютные давления на выходе и входе насоса; w н и w вс -скорости жидкости на выходе и входе насоса; z н и z вс - высоты точек замера давления, отсчитанные от произвольной горизонтальной плоскости сравнения.

Полезная мощность - мощность, сообщаемая насосом, перемещаемой жидкости:

Мощность на валу (эффективная) :

Коэффициент полезного действия представляет про­изведение трех коэффициентов, характеризующих отдельные виды потерь энергии в насосе :

,

где - гидравлический, объемный и механический КПД насоса, соответственно.

Таким образом, потери энергии в насосе подразделяются на гидравлические, объемные и механические.

Гидравлические потери энергии связаны с трением жидкости и вихреобразованием в проточной части. Для лопастных насосов это сопротивление подвода, рабочего колеса и отвода.

Теоретический напор H т , создаваемый насосом, больше напора действительного H на величину гидравлических потерь h г :

.

Гидравлический КПД представляет собой отношение действительного напора к теоретическому:

Объемные потери связаны с перетеканием жидкости через зазоры из области повышенного в область пониженного давления, а также утечками через уплотнения. Часть теряемой энергии учитывается объемным КПД:

где Q т - теоретическая производительность насоса; Q ут - перетечки внутри и утечки из насоса.

К механическим потерям относят трение в подшипниках, в уплотнениях вала, потери на трение жидкости о нерабочие поверхности рабочих колес (дисковое трение). Величина механических потерь оценивается механическим КПД:

.

Обычно для современных центробежных насосов h г = 0,90-0,96; h об = 0,96-0,98; h мех = 0,80-0,94. Значения КПД насосов, таким образом, находятся в пределах 0,6-0,9.

Для оценки насосного агрегата в целом используется КПД агрегата (насосной установки) - h а , вычисляемый как отношение полезной мощности насоса к мощности агрегата (в случае электрического привода насоса мощность агрегата - электрическая мощность на клеммах двигателя).

Таким образом, мощность насоса при электрическом приводе

Мощность приводного двигателя выбирают с учетом возможного отклонения режима работы насоса от его номинального (паспортного) режима. Чтобы не перегружать двигатель при любых отклонениях от номинального режима и при пуске, его мощ­ность выбирают с запасом

где коэффициент запаса мощности k =1,1-1,5 (принимается большим с уменьшением мощности насоса).

Насосная установка

Насосная установка включает в себя насос, всасывающий и нагнетательный трубопроводы, системы регулирования, контроля и защиты.

На рис. 2.28 приведена насосная установка на основе лопастной машины. К насосу 1 жидкость поступает из приемной емкости 2 по всасывающему трубопроводу 3. Жидкость насосом нагнетается в напорный резервуар 4 по напорному трубопроводу 5. На нагнетании насоса имеется задвижка 6, при помощи которой можно менять подачу насоса. Иногда на трубопроводе 5 устанавливают обратный клапан 7, перекрывающий напорный трубопровод при остановке насоса и препятствующий обратному току жидкости из напорного резервуара. Если давление в приемном резервуаре отличается от атмосферного или насос расположен ниже уровня жидкости в приемном резервуаре, то на всасывающем трубопроводе устанавливают задвижку 8, которую перекрывают при остановке или ремонте.


В начале всасывающего трубопровода устанавливают фильтровальную сетку 9, предохраняющую насос от попадания в него твердых частиц, и клапан 10, позволяющий залить всасывающий трубопровод и насос перед пуском.

Рис. 2.28. Насосная установка

Работа насоса может контролироваться расходомером, измеряющим производительность насоса, манометром 11, установленным на напорном трубопроводе, и мановакууметром 12, установленным на всасывающем трубопроводе, позволяющим определять напор насоса.

Рассмотрим случай, когда жидкость необходимо подавать на высоту h г из приемной емкости с давлением p 1 в напорную емкость с давлением p 2 . Запишем уравнения Бернулли для сечений 1 - 1 и 0 - 0 (сторона всасывания):

и 0 - 0 и 2 - 2 (сторона нагнетания):

Потери напора на преодоление гидравлических сопротивлений на всасывании и нагнетании равны:

, .

В связи с тем, что приемная и напорная емкости имеют большие объемы и площади резервуаров много больше площади трубопроводов, принимается, что w 1 = w 2 = 0 .

Тогда напор насоса равен:

Таким образом, напор насоса затрачивается на преодоление разности давлений в напорном и приемном резервуарах, сообщение кинетической энергии потоку жидкости на выходе из насоса (при равенстве диаметров трубопроводов на всасывании и нагнетании насосов d вс =d н , скорости на всасывании и нагнетании одинаковы w вс =w н , в этом случае второе слагаемое равно нулю), подъем жидкости на высоту и преодоление гидравлических сопротивлений во всасывающем и нагнетательном трубопроводах.

Если давления в емкостях равны и трубопровод горизонтальный, напор, создаваемый насосом, затрачивается на преодоление гидравлических сопротивлений во всасывающем и нагнетательном трубопроводах.

Напор насоса экспериментально можно определить по показаниям манометра и мановакууметра на выходе и входе насоса:

где Dh – разность в высотах расположения манометра и мановакууметра.

Характерным параметром, определяющим работу насоса на стороне всасывания, является допускаемая вакуумметрическая высота всасы­вания , которая определяется из уравнения Бернулли для сечений 1 – 1 и 0 – 0:

где р п – давление насыщенного пара при температуре перекачиваемой жидкости; Dp вс – потери давления во всасывающем трубопроводе.

Величина допускаемой вакуумметрической высоты всасывания связана с геометрической высотой всасывания, которая представляет собой разность высот уровня жидкости в приемном резервуаре и осью всасывающего трубопровода насоса. Если уровень жидкости в приемном резервуаре расположен выше оси всасывающего трубопровода насоса, то эту величину называют подпором (представляет отрицательную геометрическую высоту всасывания).

Классификация насосов по:

  • 1. Расположению. В зависимости от расположения вала насосы бывают горизонтальные и вертикальные.
  • 2. Создаваемому напору центробежные и осевые насосы разделяются на три группы: низконапорные - до 20, средненапорные - от 20 до 60, высоконапорные - более 60 м вод. ст.
  • 3. По способу привода насосы разделяются на электроприводные и паровые (привод приводится в действие отбором пара из паровой турбины).
  • 4. По области применения: отопление, горячее водоснабжение, кондиционирование, водоснабжение, водоотведение, специального назначения.
  • 5. По числу рабочих колес они делятся на одноступенчатые многоступенчатые. Одноступенчатые насосы имеют одно рабочее колесо, а многоступенчатые - два и больше, которые применяются в случаях, когда требуемый напор не может быть достигнут одним рабочим колесом.

Классификация насосов по принципу действия:

  • 1. По характеру сил, преобладающих в насосе: объёмные, в которых преобладают силы давления и динамические, в которых преобладают силы инерции.
  • 2. По характеру соединения рабочей камеры с входом и выходом из насоса: периодическое соединение (объёмные насосы) и постоянное соединение входа и выхода (динамические насосы).
  • 3. Объёмные насосы используются перекачки вязких жидкостей. В этих насосах одно преобразование энергии - энергия двигателя непосредственно преобразуется в энергию жидкости (механическая => кинетическая + потенциальная).

Это высоконапорные насосы, они чувствительны к загрязнению перекачиваемой жидкости. Рабочий процесс в объёмных насосах неуравновешен (высокая вибрация), поэтому необходимо создавать для них массивные фундаменты. Также для этих насосов характерна неравномерность подачи. Большим плюсом таких насосов можно считать способность к сухому всасыванию (самовсасыванию).

4. Для динамических насосов характерно двойное преобразование энергии (1 этап: механическая => кинетическая + потенциальная; 2 этап: кинетическая => потенциальная). В динамических насосах можно перекачивать загрязнённые жидкости, они обладают равномерной подачей и уравновешенностью рабочего процесса. В отличие от объёмных насосов, они не способны к самовсасыванию.

Насосы по принципу действия подающего элемента подразделяют на насосы возвратно-поступательного действия, роторные и динамические.

Насосы возвратно-поступательного действия. Перемещение жидкости происходит в результате осевого движения поршня или мембраны в цилиндре насоса, который через всасывающий и нагнетательный клапаны периодически соединяется с подводящим и напорным трубопроводами. При увеличении рабочего объема насоса вследствие движения поршня или мембраны жидкость всасывается через всасывающий клапан или вентиль, а при обратном ходе поршня из-за уменьшения рабочего объема через нагнетательный клапан или вентиль вытесняется в напорный трубопровод.

По виду вытеснителя насосы подразделяют на поршневые и мембранные.

Признаками классификации поршневых насосов могут служить:

  • а) способ действия поршня;
  • б) положение поршня и цилиндра (радиальное с внешними полостями, радиальное с внутренними полостями, аксиальное, горизонтальное, вертикальное);
  • в) форма поршня (клапанный, крыльчатый, дисковой, плунжерный, ступенчатый);
  • г) вид привода (рычажный, шатунный от качающегося диска, поворотный, прямодействующий).

Соответственно этому различают насосы простого или двойного действия, горизонтальные или вертикальные, радиальные или аксиальные, клапанные, крыльчатые, дисковые, плунжерные многоступенчатые с рычажным, кулачковым приводом или с качающимся приводным диском, а также прямодействующие.

Мембранные насосы классифицируют по расположению и количеству мембранных цилиндров, а также по типу привода.

Роторные насосы. Роторные насосы работают главным образом по принципу вытеснения, причем один или несколько вращающихся поршней или винтов образуют друг с другом в цилиндре насоса рабочие полости, причем размеры полости всасывания наибольшие, а напорной полости - наименьшие; поэтому жидкость из полости всасывания и выталкивается в напорную полость. Однако некоторые роторные насосы имеют постоянные рабочие полости (объем вытеснения) как на входе, так и на выходе. Принципиальные различия и некоторые преимущества роторных насосов над поршневыми заключаются:

  • а) во вращающихся поршнях;
  • б) в отсутствии клапанов в цилиндрах;
  • в) в уравновешивании масс или моментов.

По конструктивному исполнению рабочих органов все роторные насосы делят на пять основных типов, а именно: шестеренные, винтовые, коловратные, пластинчатые, роликовые.

Динамические насосы. В отличие от поршневых и роторных эти насосы работают по динамическому принципу. В результате вращения рабочих колес внутри рабочего пространства насоса кинетическая энергия от рабочего колеса передается перекачиваемой жидкости, которая в последующих элементах (диффузоре, направляющем аппарате, спирали) в большей части преобразуется в энергию давления.

По принципу действия насосы прежде всего подразделяют на лопастные и вихревые. Если лопастной насос не обладает, как правило, свойством самовсасывания, то вихревой - обычно работает по принципу самовсасывания. Кроме того, в вихревых насосах в подавляющей степени происходит непрямой обмен энергии между вторичным потоком жидкости, находящейся в рабочем колесе, и перекачиваемой жидкостью в боковом канале корпуса насоса.

Лопастные насосы подразделяют:

  • 1. По направлению потока на выходе из рабочего колеса - на центробежные насосы радиального, диагонального типов и на осевые;
  • 2. По прохождению жидкости за рабочим колесом - с направляющим аппаратом, спиральным или кольцевым отводом;
  • 3. По направлению потока жидкости в рабочем колесе или между рабочими колесами - на одно- и двухпоточные;

В многооступенчатых насосах применяют одностороннее или симметричное расположение рабочих колес.

В заключение следует еще указать на деление, или классификацию, насосов по всасывающей способности: самовсасывающие, частично самовсасывающие (с предвключенным ступенями всасывания или всасывающими устройствами) и не самовсасывающие.

Вихревые насосы по форме рабочего колеса можно классифицировать на открытые (звездообразные), закрытые (с периферийнообоковым каналом) и чисто вихревые, а по прохождению потока на одно- и многоступенчатые насосы.

Классификация по виду перекачиваемой среды . От физических и химических свойств перекачиваемой среды неизбежно зависят конструкции насоса, принцип его работы, а также выбор материала. На этом основании вид перекачиваемой среды целесообразно принять в качестве второго признака для классификации насосов. Поэтому определены шесть типичных перекачиваемых сред для насосов. В соответствии с этим насосы предназначены для чистых и слегка загрязненных жидкостей, загрязненных жидкостей и взвесей, легко загазованных жидкостей, газожидкостных смесей, агрессивных жидкостей, жидких металлов.

Насосом называется машина для создания потока жидкой среды. Под жидкой средой понимается капельная жидкость, которая может содержать твердую или газовую фазу. Назначение насоса можно определить следующим образом: сообщить капельной жидкости механическую энергию, чтобы обеспечить ее перемещение по трубопроводам (каналам) или передать энергию через жидкость для привода различных устройств и механизмов.

Насосы являются одним из наиболее распространенных типов гидравлических машин. Они отличаются разнообразным конструктивным исполнением, что иногда затрудняет их классификацию. Поток жидкой среды в насосе создается в результате силового воздействия на жидкость в проточной камере или в рабочей камере насоса. По виду рабочей камеры и сообщения ее со входом и выходом насоса различают насосы динамические и объемные .

Классификация насосов может быть выполнена по различным классификационным признакам:

для динамических насосов:
по виду сил, действующих на жидкость;
по направлению движения жидкой среды;
по виду отвода;
по конструкции рабочего колеса и др.

для объемных насосов:
по характеру движения рабочих органов;
по характеру движения ведущего звена насоса;
по направлению перемещения жидкости;
по виду рабочих органов;
по виду передачи движения к рабочим органам и др.

Динамическим насосом называется насос, в котором жидкая среда перемещается под силовым воздействием на нее в камере, постоянно сообщающейся со входом и выходом насоса.
К динамическим насосам относятся:
1) лопастные - центробежные и осевые;
2) электромагнитные - кондукционные и индукционные;
3) трения - вихревые, струйные, шнековые, вибрационные и др.

На рисунке показана схема центробежного насоса . Поток жидкой среды поступает во всасывающий патрубок 1 в осевом направлении, меняет направление движения в каналах рабочего колеса 2 на радиальное. Под силовым воздействием лопаток поток жидкости увеличивает скорость движения жидкости и давление в рабочем колесе. После прохождения рабочего колеса жидкость поступает в отвод 3. Вход и выход насоса постоянно сообщаются между собой.

Рис. Схема центробежного насоса: 1 - подвод; 2 - рабочее колесо; 3 - отвод; 4 - корпус

Объемным насосом называется насос, в котором жидкая среда перемещается путем периодического изменения объема занимаемой ею камеры, попеременно сообщающейся со входом и выходом насоса.
К объемным насосам относятся:
1) возвратно-поступательные - поршневые, плунжерные, диафрагменные;
2) крыльчатые;
3) роторные - роторно-вращательные, роторно-поступательные, роторно-поворотные и др.

На рисунке показана одна из типовых схем объемного насоса - шестеренного насоса . Насос представляет собой две шестерни, находящиеся в зацеплении. Шестерни находятся в корпусе насоса с малыми зазорами. Одна из шестерен - ведущая, другая - ведомая. При вращении шестерен объем жидкости попадает между зубьями шестерен, изолируется от всасывающей и напорной магистралей, а затем вытесняется зубьями в напорную магистраль.

Рис. Схема шестеренного насоса

Дальнейшая классификация по общим признакам динамических и объемных насосов может быть выполнена:
по направлению оси расположения вращения или движения рабочих органов: горизонтальный насос, вертикальный насос;
по расположению рабочих органов: консольный насос, моноблочный насос;
по конструкции опор: с выносными опорами, с внутренними опорами;
по расположению входа для жидкости в насос: с осевым входом, с боковым входом;
по числу ступеней: одноступенчатый, двухступенчатый, многоступенчатый;
по числу потоков: однопоточный, многопоточный;
по конструкции и виду разъема корпуса: секционный, с торцевым разъемом, с осевым разъемом, двухкорпусный, с защитным корпусом;
по расположению насоса: погружной, скважный, с трансмиссионным валом;
по требованиям эксплуатации: регулируемый, нерегулируемый, дозировочный ручной, реверсивный, обратимый;
по условиям всасывания: самовсасывающий, с предвклю-ченной ступенью, с предвключенным колесом;
по взаимодействию с окружающей средой: герметичный, взрывозащищенный, малошумный, маломагнитный;
по необходимости поддержания температуры среды: обогреваемый, охлаждаемый;
по месту установки: стационарный, передвижной, встроенный;
по размерам: малый, средний, крупный;
по мощности: микро, мелкий, малый, средний, крупный.

Сложившаяся практика классификации насосов отличается от приведенной выше.
Насосы называют, например, по отрасли техники, в которой они используются: насос теплоэнергетики, судовой насос, насос атомной промышленности, насос химический и т. д.;
или по роду перекачиваемой жидкости: для чистой воды, масляный, нефтяной, бензиновый;
по целевому назначению: питательный, смесительный, дозировочный и т. д.

Насосами называются гидравлические машины, предназначенные для перемещения жидкостей и сообщения им механической энергии.

Насосы являются одной из самых распространенных разновидностей гидравлических машин. Они применяются для наружного водоснабжения (в том числе и противопожарного) населенных пунктов и предприятий, внутреннего водоснабжения жилых, общественных и производственных зданий, для подачи воды на пожаротушение автонасосами, мотопомпами, для подачи воды и огнетушащих составов в установках пожаротушения, в системах смазки, топливоподачи и гидропривода пожарных автомобилей и для многих других целей. Насосы подразделяются на две основные группы: объемные и динамические . Объемными называются насосы, в которых жидкость перемещается путем периодического изменения объёма камеры, попеременно сообщающейся со входом и выходом насоса. Динамическими называются насосы, в которых под воздействием гидродинамических сил перемещается с камерой (незамкнутом объеме) жидкость, постоянно сообщающейся со входом и выходом насоса. К ним относятся струйные и лопастные насосы.

Весьма наглядной является классификация насосов по принципу действия, вне зависимости от вида перемещаемой жидкости (рис. 9.1).

Действие объемных насосов основано на изменении потенциальной энергии перемещаемой жидкости, а струйных и лопастных - на изменении кинетической энергии.


Рис. 9.1. Классификация насосов

Насосы классифицируются не только по принципу действия, но и по конструктивному исполнению, назначению, отраслевому применению, величине подачи и напора и т.д.

Рассмотрим основные схемы насосов.

Поршневой насос (рис. 9.2) в простейшем виде представляет собой расположенный в цилиндрическом кожухе поршень, при движении которого в одну сторону жидкость через всасывающий клапан поступает в рабочую камеру, а при движении в другую сжимается и затем выталкивается через нагнетательный клапан.

Положительными качествами поршневых насосов являются: высокий КПД, возможность получения больших давлений, независимость подачи от создаваемого давления, запуск без предварительной заливки всасывающих линий (самовсасывающие). Недостатками - громоздкость и затруднитель-ность непосредственного соединения с электродвигателем, наличие клапанов, неравномерность подачи, вызывающая вибрацию, сложность регулировки. Скорость поршня таких насосов ограничена действием инерционных сил.

Рис. 9.2. Поршневой насос

К насосам возвратно-поступательного действия, кроме поршневых относятся также мембранные (диафрагменные ) насосы (рис. 9.3), которые нашли распространение в системах топливоподачи автомобилей (в том числе и пожарных).

Рис. 9.3. Мембранный насос

К роторным насосам относятся пластинчатые, зубчатые (шестеренные), винтовые, червячные и др. Они представляют собой объемные насосы с вращающимся ротором без всасывающих и напорных клапанов и вследствие отсутствия возвратно-поступательного движения их можно непосредственно соединять с высокооборотными электродвигателями.

Типичным представителем роторных насосов является пластинчатый насос (рис. 9.4).

В простейшем виде он представляет собой эксцентрично расположенный в цилиндрическом корпусе 2 ротор 1 , в пазах которого находятся пластины 3 , отжимаемые от центра к периферии действием центробежной силы. При вращении цилиндра 1 пластины 3 производят всасывание жидкости через приемный патрубок 4 , сжатие ее и нагнетание через напорный патрубок 5 . Насос является реверсивным: при изменении направления вращения его вала изменяется направление движения жидкости в трубопроводах, присоединенных к насосу.

Рис. 9.4. Пластинчатый насос роторного типа

Зубчатый насос состоит из пары сцепленных между собой шестерен, расположенных в открытом с двух сторон кожухе (рис. 9.5), с минимальным зазором между зубьями и кожухом. Зубья при вращении захватывают жидкость и переносят её со стороны всасывания в сторону нагнетания. Эти насосы получили распространение в системах смазки при перекачки вязких жидкостей (масел).

Струйные насосы используются в пожарной охране для заполнения всасывающих линий пожарных насосов, для подачи воды на пожар при расположении насоса более 7 м над уровнем воды, для уборки воды из помещений после тушения пожара. Принципиальная схема насоса струйного типа, его работа и основы расчета приведены в гл. 3.

В противопожарном водоснабжении наиболее распространены центробежные насосы. В дальнейшем мы подробно рассмотрим устройство и принцип действия центробежных насосов (рис. 9.12), их классификацию.


Рис. 9.5. Зубчатый насос

Отметим только, что их широкое распространение объясняется высоким КПД, компактностью и сравнительной простотой в конструктивном отношении, ремонтопригодностью и удобством эксплуатации. Их можно непосредственно соединять с электродвигателями, легко регулировать, они имеют плавную, без толчков, подачу.

У осевых насосов (рис. 9.6) лопасти 1 закреплены на втулке 2 под некоторым углом к плоскости, нормальной к оси. При вращении лопасти взаимодействуют с потоком жидкости, сообщая ей энергию и перемещая её вдоль оси насоса.


Рис. 9.6. Осевой насос

На рис. 9.7 дана схема вихревого насоса . Жидкость поступает через патрубок 1 на периферию рабочего колеса с лопастями 2 и, получая от них энергию при движении по концентрическому каналу 3 , отводится в напорный патрубок 4 .

Характерной особенностью вихревого насоса являются подвод и отвод жидкости на периферии рабочего колеса по касательной к нему. Недостаток вихревых насосов - невысокий КПД. Осевые и вихревые насосы обладают реверсивностью, т.е. способностью изменять направление подачи при изменении направления вращения.


Рис. 9.7. Вихревой лопастной насос

Центробежные насосы являются самыми распространённым насосами в мире. Благодаря своей конструкции и стабильной работе этот тип насосов нашел широкое применение, как для решения бытовых задач, так и для основных технологических процессов в самых различных отраслях промышленности. В данной статье будет дано полное описание центробежных насосов, рассказано как работает центробежный насос, его классификация и основные области использования.

Основным элементом центробежного насоса является рабочее колесо (импеллер), расположенное внутри спирального корпуса (улитка), которое имеет лопасти, направленные в обратную сторону относительно вращению самого колеса. Импеллер устанавливается на вал, который соединен с приводом насоса. При старте работы агрегата рабочее колесо начинает вращаться, и жидкость через всасывающий патрубок поступает вдоль оси вращения колеса.

Под действием центробежной силы, жидкость перемещается по каналам между лопастями в радиальном направлении (от центра импеллера к его периферии) в спиральную камеру корпуса насоса, а затем и в нагнетательный патрубок насоса. На периферии рабочего колеса располагается зона повышенного давления. В центре же давление понижено, что обеспечивает постоянное поступление жидкости в насос.

Конструкция центробежных насосов

Центробежный насос состоит из следующих основных частей:

  • Всасывающий патрубок
  • Нагнетательный патрубок
  • Спиральный корпус (проточная часть насоса)
  • Рабочее колесо (импеллер)
  • Уплотнение вала
  • Картер насос

Классификация центробежных насосов

Центробежные насосы можно классифицировать по конструктивным исполнениям его основных элементов, по типу установки и назначению.

По расположению патрубков насосов

  • Насос «ин-лайн» типа. У данного типа насоса всасывающий и нагнетательный патрубок находятся на одной линии друг напротив друга. Перекачиваемая жидкость проходит сквозь насос. Насос устанавливается на прямых участках трубопровода.
    • Консольные насосы. Жидкость поступает в центр рабочего колеса (импеллера). Патрубки расположены под 90˚С относительно друг друга.

    По количеству ступеней насоса


    • Многоступенчатый насос имеет на валу более одного последовательно соединённых колес. Такой тип насосов используется для обеспечения высокого напора при сравнительно небольшом расходе. Высокий напор создается благодаря сумме напоров, создаваемых каждым отдельным колесом. Перекачиваемая жидкость переходит последовательно от одной ступени к другой.

  • По типу уплотнения вала

    Для защиты от попадания перекачиваемой жидкости в окружающую среду и в механическую часть центробежного насоса используются различные уплотнительные системы. По типу применяемой системы насосы можно разделить на:

    • Центробежные насосы с сальниковым уплотнением (ссылка на сальниковое уплотнение)
    • Центробежные насосы с торцевым уплотнением (одинарным или двойным) (ссылка на торцевое уплотнение)
    • Центробежные насосы с магнитной муфтой (ссылка на магнитную муфту)
    • Центробежные насосы герметичные с мокрым ротором (ссылка на мокрый ротор)
    • Центробежные насосы с динамическим уплотнением (ссылка на динамическое уплотнение)

    По типу соединения с электродвигателем

    Центробежные насосы разделяются также по типу соединения гидравлической части насоса с электродвигателем. Выделяют типы:

    • Насос с соединительной муфтой. Упругая муфта — это элемент, позволяющий соединить вал электродвигателя и вал, на котором крепится рабочее колесо. Для этого используется, как обычная муфта, так и муфта с промежуточным элементом. Использование промежуточного элемента позволяет не отсоединять электродвигатель при техническом обслуживании насоса, например при замене торцевого уплотнения.
    • Моноблочный насос. У данного типа насосов рабочее колесо крепится либо сразу на удлиненном валу электродвигателя, либо для соединения вала двигателя и насоса используется неподвижная постоянная глухая муфта.

      По назначению

      Благодаря своим конструкционным возможностям назначение центробежного насоса может быть самым различным. По данному показателю выделяют следующие типы центробежных насосов:

      • Дренажные
      • Скважинные
      • Фекальные
      • Шламовые
      • Пищевые
      • Санитарные
      • Пожарные
      • Самовсасывающие

      Материальное исполнение центробежных насосов

      Центробежные насосы применяются практически во всех отраслях промышленности, перекачивают самые различные жидкости, начиная с воды и заканчивая высоко агрессивными и абразивными суспензиями.

      Поэтому выбор материалов для основных элементов центробежных насосов очень широкий и чаще всего он основывается на стойкости данного материала к свойствам перекачиваемой жидкости (ссылка на таблице хим. стойкости) и условиям работы самого насоса.

      Можно выделить следующие основные материалы:

      Металлическое исполнение

      • Чугун
      • Бронза
      • Углеродистая сталь
      • Нержавеющая сталь
      • Дуплекс
      • Супер-дуплекс
      • Титан
      • И.т.д

      Футерованные и пластиковые исполнения

      При работе с высоко агрессивными жидкостями, например с кислотами, металлическое исполнение не всегда может обеспечить необходимой коррозионной защиты. Либо применения сверхстойких сплавов может привести к значительному удорожанию всей конструкции.

      Поэтому широкое распространение приобрело использования самых различных пластиков, в качестве основного материала контактирующего со средой в центробежных насосах.

      Можно выделить два основных типа:

      • Футерованные насосы. Футеровка – это процесс нанесения пластикового покрытия на металлический корпус насоса. Все элементы контактирующие с перекачиваемой средой покрыты слоем полимера, что значительно увеличивает коррозионною устойчивость всей проточной части. Современные технологии обеспечивают отличное сцепление между покрытием и корпусом, т.к при отливке полимер заполняет все полости и зазоры.

      • Пластиковые центробежные насосы. Основные элементы насоса, контактирующие со средой, выполнены из цельного пластика, обработанного на специальных станках.


      Материалы для футерованных и пластиковых насосов:

      • PP — полипропилен
      • PVDF- поливинилденефлуорид
      • PE – полиэтилен
      • PVC – поливинилхлорид
      • PFA – перфторалкоксил
      • PTFE – политетрафторэтилен
      • ETFE – этилентетрафторэтилен (Tefzel)
      • FEP – фторэтиленпропилен

      Материалы уплотнительных колец

      В качестве уплотнительных колец в центробежных насосах чаще всего используют следующие эластомеры:

      • EPDM — Этилен-пропиленовые каучук
      • NBR — Бутадиен-нитрильный каучук
      • FPM/FKM/Viton — Фторкаучук
      • FFKM — Каучук перфторированный

      Преимущества и недостатки центробежных насосов

      Преимущества:

      • Простая конструкция
      • Немного движущихся частей, большой срок службы
      • Высокий КПД
      • Высокие показатели производительности
      • Постоянная подача, без пульсаций
      • Регулировка производительности с помощью дроссельного клапана на линии нагнетания или частотного преобразователя

      Недостатки

      • Невозможность «самовсасывания»
      • Большой риск кавитации
      • Производительность сильно зависит от напора
      • Наиболее эффективны только в одной заданной рабочей точке. При регулировании подачи с помощью частотного преобразователя эффективность понижается
      • Не может работать с мультифазными жидкостями с содержанием воздуха или газа
      • При перекачки абразивных жидкостей возможный быстрый износ основных элементов из-за высокой скорости вращения рабочего колеса (около 1500 об/мин).
      • Не может работать с высоковязкими жидкостями (макс. 150 сСт)

      Области применения

      Центробежные насосы применяются практически во всех отраслях промышленности.

      Основные из них:

      Водоснабжение и водоотведение

      Водоочистные сооружения

      Энергетика

      Нефтяная и газовая промышленность

      Химическая промышленность

      Целлюлозно-бумажная промышленность

      Горнодобывающая промышленность

      Фармацевтическая

Основные производители

Крупных игроков на рынке центробежных насосов можно также разбить по отраслям в которых они наиболее сильны:

Водоснабжение, водоотведение, водоочистка

  • Grundfos: grundfos.com
  • Wilo:wilo.ru
  • Группа компаний Xylem. Насосы Lowara, Goulds, Flygt, Vogel и.т.д: http://xylem.ru
  • KSB: https://www.ksb.com/ksb-ru/
  • Pentair: www.pentair.com
  • Ebara: http://www.ebaraeurope.ru/
  • Caprari: www.caprari.it

Нефтехимическая отрасль

  • Flowserve www.flowserve.com
  • ITT www.itt.com/
  • Sulzer www.sulzer.com
  • Hermetic Pumpen www.hermetic-pumpen.com
  • Kirloskar pumps www.kirloskarpumps.com/
  • Ruhrpumpen www.ruhrpumpen.com

Химическая промышленность

  • Munsch munsch.de/
  • Pompe Travaini www.pompetravaini.it/
  • Someflu pump www.someflu.com/
  • Rutschi Gruppe www.grupperutschi.com

Горнодобывающая отрасль

  • Warman . Группа компания Weir mineral https://www.global.weir/brands/
  • Krebs . Группа компаний flsSmidt http://www.flsmidth.com/en-US/Krebs
  • Habermann pumpen www.aurumpumpen.de/ru/